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Abstract

Nervous systems exploit regularities in the sensory environment to predict sensory input,

adjust behavior, and thereby maximize fitness. Entrainment of neural oscillations allows

retaining temporal regularities of sensory information, a prerequisite for prediction. Entrain-

ment has been extensively described at the frequencies of periodic inputs most commonly

present in visual and auditory landscapes (e.g., >0.5 Hz). An open question is whether neu-

ral entrainment also occurs for regularities at much longer timescales. Here, we exploited

the fact that the temporal dynamics of thermal stimuli in natural environment can unfold very

slowly. We show that ultralow-frequency neural oscillations preserved a long-lasting trace of

sensory information through neural entrainment to periodic thermo-nociceptive input as low

as 0.1 Hz. Importantly, revealing the functional significance of this phenomenon, both power

and phase of the entrainment predicted individual pain sensitivity. In contrast, periodic audi-

tory input at the same ultralow frequency did not entrain ultralow-frequency oscillations.

These results demonstrate that a functionally significant neural entrainment can occur at

temporal scales far longer than those commonly explored. The non-supramodal nature of

our results suggests that ultralow-frequency entrainment might be tuned to the temporal

scale of the statistical regularities characteristic of different sensory modalities.

Introduction

The sensory environment is dynamic in nature, with its temporal structures unfolding across

multiple timescales. Time is therefore an indispensable aspect of sensory experiences. The abil-

ity of the brain to track and predict the temporal dynamics of sensory inputs allows an organ-

ism to take appropriate actions to meet the changing environmental demands. What neural

processes may be responsible for these functions, however, is still an open question. Accumu-

lating evidence supports a theory that neural codes of temporal information build on brain

oscillations [1–3]. Taking situations involving rhythmic sensory inputs as an example, the

brain may adapt to the external rhythm through entrainment of ongoing neural oscillations at
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the corresponding frequency [2,4–6]. Thus, neural entrainment constitutes a flexible mecha-

nism through which the brain adjusts the power or the phase of ongoing oscillations as a func-

tion of sensory input, with consequences on brain dynamics that can persist after the sensory

input has ceased [7,8].

Temporal dynamics are ubiquitous in sensory domains, including pain [9–13]. Still, most

neuroimaging studies investigating the neural mechanisms of pain were conducted using tran-

sient painful stimulation [14–16]. This approach poses two main problems. First, the neural

responses to transient painful stimulation are dominated by supramodal neural activities—i.e.,

activities associated with the detection of salient environmental events regardless of their

modality [17–19]—which limits the usefulness of this approach in identifying nociceptive-spe-

cific brain processing [16]. Second, the presentation of a single intense painful stimulus does

not capture the rich and often long-lasting dynamics of pain perception, leaving the critical

question of how the brain processes dynamic pain information largely unanswered. There is,

therefore, a growing consensus in the field that a shift is needed from measuring brain

responses elicited by transient painful stimulation to more naturalistic approaches that allow

the capture of the temporal dynamics of pain [15,16].

Some attempts have been made in this new direction [10,20–25]. Tonic and fluctuating

nociceptive stimuli delivered at temporal scales of seconds to minutes have been used to better

simulate the dynamics of spontaneous pain in clinical conditions [14,15]. A small number of

studies tried to relate the temporal profile of brain activity sampled using electroencephalogra-

phy (EEG) to that of either nociceptive input or reported pain. The main observations were a

relationship between the power of alpha (8–12 Hz) and beta (13–30 Hz) oscillations in sensori-

motor areas and the fluctuations of nociceptive input [21,22,25], as well as between the power

of gamma oscillations (>30 Hz) in medial prefrontal cortex and fluctuations of pain intensity

[22,25]. In other words, the slow temporal dynamics of both nociceptive input and pain seem

to be reflected in neural oscillations at frequencies several orders of magnitude higher than

that of ongoing pain.

The above considerations lead to an outstanding question about the role of low-frequency

neural oscillations: can the slow dynamics of pain be represented in neural oscillations at the

same timescales? This is physiologically plausible, for several reasons. First, a 1:1 phase locking

between the rhythm of external sensory inputs and neural oscillations is theoretically possible

[26–28] and has been, in fact, repeatedly observed in auditory and visual domains in the form

of neural entrainment [7,29–33]. In these cases, the neural oscillations, and specifically their

phase structures, may serve as a substrate of temporal representation and prediction of the

incoming input [1,2]. Second, even when the power of higher-frequency oscillations is modu-

lated at the lower frequency of the sensory input, oscillations at the same frequency of the

input can still be functionally important: they may coordinate rapidly changing and local neu-

ral processing, usually reflected by high-frequency brain activities, with brain activities operat-

ing at slower and more behaviorally relevant timescales [1,34,35].

Therefore, in the current study, we investigated whether the brain encodes long-timescale

dynamics of painful input through entrainment of ultralow-frequency neural oscillations. Spe-

cifically, we investigated (1) whether and how amplitude and phase modulations contribute to

such entrainment, (2) whether this entrainment is supramodal, and (3) whether the strength

of entrainment reflects the variability of perceptual sensitivity across participants.

To address these questions, we recorded high-density EEG (128 electrodes) from partici-

pants receiving continuous thermo-nociceptive and continuous loud auditory stimuli oscillat-

ing at 0.1 Hz. Painful stimuli were delivered over the hand dorsum using a feedback-

controlled laser stimulator with high temporal and temperature precision. Participants were

requested to rate the perceived stimulus intensity on a visual analogue scale (VAS). To control
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for the confounding effect of the rating task, in two additional conditions participants received

painful and auditory stimuli but were not required to rate them. Finally, to control for stimu-

lus-intensity effects, we included an additional condition in which painful stimuli of lower

intensity were delivered. Thus, there were five conditions in total.

Our results provide clear evidence that the long-timescale dynamics of nociceptive input

are encoded by neural oscillations at the same ultralow frequency of the input. This ultralow-

frequency entrainment was not supramodal, as it was robust during nociceptive stimulation but

not present during auditory stimulation of similar intensity. Remarkably, the strength of neural

entrainment to the nociceptive input was predictive of pain sensitivity across individuals.

Results

Stimulus input and perceptual ratings have similar temporal profiles

Participants’ continuous rating of perceived intensity roughly followed the temporal pattern of

the rhythmic stimulation. In both pain (Fig 1A) and auditory (Fig 1B) rating time series, we

observed three cycles whose period was similar to that of the stimulus. We formally compared

the peak amplitude and latency of ratings across conditions and cycles. The results (Fig 1C and

S1 Text) showed that auditory ratings peaked earlier than pain ratings in all three cycles and

that pain ratings were decreased and delayed in the last two cycles compared to the first one

(Fig 1C).

Low-frequency nociceptive input enhances neural activity at the frequency

of the stimulus

Next, we examined whether brain activities encoded the low-frequency rhythmic stimulation.

When inspecting the time-domain EEG responses to the nociceptive input, we observed that

Fig 1. Rhythmic stimulus inputs and perceptual ratings. (A) Nociceptive stimuli consisted of a 0.1-Hz sinusoidal

modulation of skin temperature with a 3˚C difference between peaks and troughs, lasting 30 seconds. Stimulation

temperatures were adjusted for each participant (see Materials and methods). High-pain stimuli (dotted red line) were

set to 1˚C above the low-pain stimuli (dotted yellow line). In some conditions, participants (N = 30) were required to

continuously rate their perceived pain intensity using a VAS ranging from 0 to 10. Both the high-pain (solid red line)

and low-pain (solid yellow line) rating time courses followed the nociceptive input (shaded regions indicate the SEM

across participants). (B) Auditory stimuli consisted of a 0.1-Hz sinusoidal modulation of the amplitude of a 280-Hz

pure tone (dotted blue line). In some conditions, participants were required to continuously rate their perceived sound

intensity (solid blue line). (C) Peak amplitude (top) and latency (bottom) of the intensity ratings. The peak latency is

expressed as difference between a peak in the rating and the corresponding peak in the stimulus. Error bars indicate

the SEM across participants. Data underlying these plots can be found in S1 Data. C1-C3, cycle 1 to 3; SEM, standard

error of the mean; VAS, visual analogue scale.

https://doi.org/10.1371/journal.pbio.3000491.g001

PLOS BIOLOGY Ultralow-frequency neural entrainment to pain

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000491 April 13, 2020 3 / 27

https://doi.org/10.1371/journal.pbio.3000491.g001
https://doi.org/10.1371/journal.pbio.3000491


central electrodes displayed a clear oscillatory pattern reminiscent of that of the stimulus (Fig

2A; see also S1 Fig for EEG time series at other electrodes). Importantly, these EEG oscillations

were not visible in response to the auditory stimulation. To quantify the frequency contents of

these EEG responses, we transformed single-trial EEG signals into the frequency domain and

then averaged the resultant power spectra across trials, for each participant and condition (S2

Fig). Note that we performed the frequency decomposition at trial level rather than on single-

Fig 2. Neural oscillations are enhanced at the frequency of nociceptive input. (A) EEG time series averaged across participants (left column;

N = 30) and from a representative participant (right column) in a central electrode cluster (Cz and its closest neighbors FCC1h, FCC2h, CCP1h,

and CCP2h). Note how the neural activity displayed an oscillatory pattern reminiscent of that of sensory input in pain but not in auditory

conditions. Signals smoothed with a moving mean filter with a 2-second window (black) are superimposed on unsmoothed signals (gray). (B)

BSP of EEG in the central electrode cluster during nociceptive (top) and auditory (bottom) stimulation. Shaded regions around the solid lines

indicate SEM across participants. Consistent power enhancement across participants (marked by asterisk; one-sample t test of BSP against 0,

FDR corrected across frequencies) was only observed at the stimulus frequency (0.1 Hz, vertical dashed line) during nociceptive stimulation.

Insets show the scalp topographies of the BSP at 0.1 Hz. (C) Topographies of F values from a two-way repeated-measures ANOVA exploring the

effect of factors Modality and Rating on 0.1-Hz BSP. Top row: F values; bottom row: thresholded F values (P< 0.05, FDR corrected across

electrodes); nonsignificant regions are masked with white. (D) Single-participant t values expressing the across-trial consistency of 0.1-Hz power

enhancement at central electrodes. Red dashed line: t value at P = 0.05. Data underlying these plots can be found in S1 Data. BSP, background-

subtracted power; EEG, electroencephalography; FDR, false discovery rate; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3000491.g002
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participant average waveforms because in the former case, it is possible to detect an increase of

power regardless of whether neural activity is phase-locked across trials. To reveal the fre-

quency of power increases, we subtracted the average power of neighboring frequencies from

each given frequency, yielding background-subtracted power (BSP), as previously recom-

mended [20,36,37]. We found strong evidence for a power enhancement only at 0.1 Hz for all

three conditions entailing nociceptive stimulation (Fig 2B; all t29 > 7.802, P< 0.0001, Cohen’s

d> 1.424). This effect was maximal in central scalp regions (Fig 2B; also see S3 Fig for detailed

results at other frequencies and scalp positions). This power enhancement could be consis-

tently detected across single trials in the majority of individuals (Fig 2D).

We observed strong evidence that the BSP at 0.1 Hz in central scalp regions was greater in

pain than in the auditory conditions (main effect of Modality: F1,29 = 39.48, P< 0.0001, partial

η2 = 0.5765, two-way repeated-measures ANOVA at Cz; see Fig 2C for scalp topography of

this effect). There was no evidence for a main effect of Rating or for a Modality × Rating inter-

action (Fig 2C), indicating that the power enhancement was not dependent on the rating task.

These results showed an enhancement of neural activities specifically at the frequency of

rhythmic painful stimulation. Importantly, this effect was neither supramodal (i.e., it was not

present in audition) nor dependent on whether the participants were performing a rating task.

Also, the observation of an increase of BSP calculated using an extremely narrow frequency

window of 0.06 Hz (i.e., from −0.03 Hz to +0.03 Hz with respect to 0.1 Hz) strongly indicates

that the observed power increase is not consequent to a general autonomic response but has

instead a neural origin.

Phase reorganization of neural activity at the frequency of the nociceptive

stimulus

The finding that neural activity and stimulus profile have the same peak frequency does not

necessarily indicate a stable phase relationship between the two [38]. To test for such a phase

relationship, we quantified the EEG phase locking across trials using intertrial phase coherence

(ITPC), separately for each participant and condition. Since EEG trials were time aligned to

the onset of the rhythmic stimulation, it follows that here ITPC also quantified the consistency

of the phase relationship between stimulus and EEG data within each individual. We observed

that during painful, but not auditory, stimulation there was a clear peak of ITPC at 0.1 Hz.

This was observed in both the mean ITPC across participants (Fig 3A) and the percentage of

participants with significant ITPC (Fig 3B; ITPC significance was determined in each partici-

pant using the Rayleigh’s test for circular uniformity [39]). This phase-locking effect at the fre-

quency of the nociceptive stimulation was maximal in central scalp regions (Fig 3A and 3B).

To test for the group-level consistency of this effect, we compared the group-mean ITPC and

the percentage of participants with significant ITPC to randomized data (see Materials and

methods). In all pain conditions, both ITPC measures at 0.1 Hz in central regions were consis-

tently greater than chance (all P< 0.001) (Fig 3A and 3B; also see S4 Fig for detailed test results

at other frequencies and positions).

We observed strong evidence that the 0.1-Hz ITPC in central scalp regions was higher in

pain than in audition (main effect of Modality: F1,29 = 40.15, P< 0.0001, partial η2 = 0.5806,

two-way repeated-measures ANOVA at Cz; see Fig 3C for scalp topography of this effect).

There was no main effect of Rating on 0.1-Hz ITPC, except in two electrodes distant from

each other (Fpz, CPz), in which the evidence for this main effect was, however, weak (Fig 3C

for scalp topography of this effect). There was no Modality × Rating interaction (Fig 3C).

Given that phase locking across trials (i.e., a relatively stable phase relationship between the

neural responses and the stimulus profile) could result from a reorganization of the phase of

PLOS BIOLOGY Ultralow-frequency neural entrainment to pain

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000491 April 13, 2020 5 / 27

https://doi.org/10.1371/journal.pbio.3000491


ongoing neural oscillations, we tested whether the degree of phase locking was related to the

phase of ongoing EEG. We sorted single trials into six bins according to the prestimulus phase

at central scalp regions and calculated 0.1-Hz phase locking (ITPCZ; Rayleigh’s Z, see Materials

and methods) during stimulation for each bin, modality, and participant. As shown in Fig 3D,

we observed clear evidence that the phase of prestimulus oscillations influenced the degree of

phase locking during stimulation. Phase locking in the pain trials was maximal when the onset

of the rhythmic nociceptive stimulation coincided with the trough of ongoing oscillations (i.e.,

around π) and minimal when the stimulus onset coincided with the peak (i.e., around 0 or 2π)

(F5,145 = 4.433, P = 0.0009, partial η2 = 0.1326, two-way repeated-measures ANOVA, main

effect of Bin; post hoc tests showed significant differences between either of the two bins

around π and either of the two bins around 0, all P< 0.0054). Although there was strong evi-

dence that the phase locking in auditory trials was lower than that in pain trials (F1,29 = 18.31,

P = 0.0002, partial η2 = 0.3870, main effect of Modality), the lack of a Bin × Modality interac-

tion (F5,145 = 1.018, P = 0.4094, partial η2 = 0.0339) indicated that also in the auditory trials,

Fig 3. Rhythmic nociceptive input adjusts the phase of neural oscillations at stimulus frequency. (A) ITPC averaged across participants (N = 30) as a function of

frequency at central electrodes (blue lines; shaded regions indicate SEM across participants). Note that pain conditions show an ITPC peak at the stimulus frequency

(0.1 Hz, vertical dashed line), whereas the auditory conditions do not. Insets show topographies of the ITPC at 0.1 Hz and the comparison of the 0.1-Hz ITPC from

central electrodes (vertical red lines) to ITPC obtained from randomized data. (B) Percentage of participants with significant ITPC (Rayleigh’s test P< 0.05) as a

function of frequency at central electrodes. Note the peak at 0.1 Hz during nociceptive but not auditory stimulation. Insets show topographies of the percentage of

participants with a significant ITPC at 0.1 Hz and the comparison at central electrodes to the same percentage obtained from randomized data. (C) Topographies of F

values from a two-way repeated-measures ANOVA exploring the effect of factors Modality and Rating on 0.1-Hz ITPC. Top row: F values; bottom row: thresholded F

values (P< 0.05, FDR corrected across electrodes); nonsignificant regions are masked with white. (D) The degree of phase locking during nociceptive stimulation was

dependent on the phase of prestimulus oscillations. The strongest phase locking occurred in trials in which the stimulus started around the trough (π rad) of ongoing

oscillations (right: pain trials in the two bins around π from a representative individual), whereas the weakest phase locking occurred when the stimulus started around

the peak (0 rad) of ongoing oscillations (left: pain trials in the two bins around 0 from the same individual). As the signals displayed in the left and right panels are

subgroups of trials selected for having a certain prestimulus phase, the prestimulus phases shown in each panel are unavoidably aligned. Error bars indicate SEM across

participants. Data underlying these plots can be found in S1 Data. FDR, false discovery rate; ITPC, intertrial phase coherence; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3000491.g003
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phase locking was influenced by the phase of prestimulus oscillations, although to a lesser

extent (there was no post hoc evidence for differences in phase locking between bins in audi-

tory trials; P> 0.1440 in all bin comparisons).

To further illustrate the building up of phase locking over time, we also calculated ITPC

using the instantaneous phase of ultralow-frequency oscillations (see Materials and methods).

In all three pain conditions, instantaneous ITPC increased after stimulus onset, whereas in the

two auditory conditions, ITPC remained at prestimulus level (S5 Fig).

Altogether, these results show phase locking of neural oscillations at the frequency of the

rhythmic nociceptive stimulation. The degree of such phase locking clearly depended on the

phase of ongoing neural oscillations. Similar to the power increase, this phase-locking effect

was also not supramodal and not related to whether the participants were performing a rating

task.

Pain sensitivity across individuals is reflected in the strength of neural

entrainment

Perceived pain was stronger in participants with a stronger neural entrainment. Specifically,

we correlated the pain rating time series to the indices of power enhancement (BSP) and phase

locking (ITPC) at 0.1 Hz in central scalp regions. We observed clear positive correlations in

the time interval around each rating peak (Fig 4). Remarkably, the across-participant variabil-

ity in perceived pain intensity was also reflected in the phase relationship between the

entrained oscillations and the stimulus (Fig 5). To evaluate this relationship, we fitted a single-

cycle cosine to the participant-mean peak rating as a function of the phase of 0.1-Hz oscillation

in central scalp regions. In individuals who rated the nociceptive stimulus as more painful, the

phase of neural activity at 0.1 Hz was closer to that of the stimulus input. This is an important

finding, given that almost all nociceptive-evoked neural responses fail to track pain sensitivity

across participants, in both human and animal studies [40].

Importantly, all these relationships (i.e., the correlation between BSP/ITPC and pain rat-

ings, and the relationship between phase and pain ratings) existed not only (1) within the con-

ditions entailing nociceptive stimulation with ratings (Fig 4B and 4F; Fig 5B and 5F) but also

(2) between high-pain and low-pain conditions (Fig 4C, 4D and 4E; Fig 5C, 5D and 5E) and

even (3) between pain ratings and the neural entrainment in the pain condition without rat-

ings (Fig 4A and 4D; Fig 5A and 5D). The relationships in (2) suggested that the strength of

neural entrainment reflected individual pain sensitivity. The relationships in (3) further dem-

onstrated that the link between pain sensitivity and the strength of neural entrainment was not

driven by the rating task. No such relationships were observed in the conditions entailing audi-

tory stimulation (Fig 4G and 4H; Fig 5G and 5H).

To test whether the variability in stimulus temperature contributed to the above results, we

also tested for an across-participants relationship between stimulus temperature and pain rat-

ings, as well as between stimulus temperature and neural entrainment. We did not observe

such relationships (see S1 Table for detailed statistical results).

Having found clear correlations between pain ratings and three features of the entrained

oscillations (power enhancement, phase locking, and phase difference between brain oscilla-

tions and stimulus), we further investigated the contribution of each of these variables to

explain the pain rating variance across participants. Specifically, we performed multiple linear

regression and used the Akaike information criterion (AIC) [41] and the Akaike weights (wi)

[42] to compare regression models containing different combinations of the three explanatory

variables (see Materials and methods). These analyses were performed for each pain condition

and separately for the ratings of the high-pain and low-pain stimulation as the dependent
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variable. The results, summarized in S3 Table, showed no obvious consistency in which model

explained most of the rating variance, although the best models almost always entailed a com-

bination of measures of power and phase.

Taken together, these results show that the strength of entrainment could predict the sensi-

tivity of each participant to painful stimulations.

Stimulus-induced neural oscillations outlast nociceptive input

A remarkable observation was that neural oscillations around 0.1 Hz continued for at least 10

seconds after the end of the rhythmic nociceptive input (Figs 2A and 6). The observation that

the scalp topographies at the peak of the additional cycle resembled those of the previous cycles

(Fig 6) further indicates self-sustained activity of the same underlying neural process. These

Fig 4. Pain sensitivity across individuals is reflected in the strength of neural entrainment: Power and phase locking. Traces on the top show

individual rating time series. Scatterplots on the left show individual BSP (top scatterplots of each condition, expressed as 10�log10 [μV2/Hz]) and ITPC

(bottom scatterplots of each condition) at 0.1 Hz at central electrodes. Black lines show the correlation coefficients between BSP/ITPC and ratings across

time. Both BSP and ITPC of each of the three pain conditions were correlated to the high-pain (A-C) and low-pain (D-F) ratings, in the time intervals

around the rating peaks (marked by yellow bars; P< 0.05, FDR corrected across time points). Note that the positive across-participant correlation was

present not only when correlating BSP and ITPC with ratings within condition (B,F), but also when correlating BSP and ITPC with ratings across

conditions (e.g., when correlating BSP and ITPC from the pain no-rating condition with high-pain and low-pain ratings; A,D). Importantly, BSP and ITPC

in the auditory conditions were not correlated to the auditory intensity ratings (G-H). N = 30 participants. Data underlying these plots can be found in S1

Data. BSP, background-subtracted power; FDR, false discovery rate; ITPC, intertrial phase coherence.

https://doi.org/10.1371/journal.pbio.3000491.g004
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observations also provide further evidence that the observed ultralow-frequency oscillations

were not consequent to autonomic responses. Finally, the amplitude of this additional oscilla-

tion after the end of rhythmic nociceptive stimulation was correlated with pain ratings across

participants (Fig 6).

Source modeling of ultralow-frequency oscillations

We estimated the brain generators of the amplitude of ultralow-frequency oscillations using

CLARA (classical LORETA analysis recursively applied), a distributed source analysis

approach [43–45]. In all three pain conditions, CLARA estimated two distinct sources, with

the strongest source consistently located in the posterior cingulate cortex (PCC) (high-pain no

rating: 4, −45, 31 mm [Talairach coordinates at the maximum intensity], maximum intensity

2.1 nAm/cm3; high-pain rating: −10, −39, 35 mm, 2.4 nAm/cm3; low-pain rating: −4, −45, 24

mm, 1.7 nAm/cm3) (S6 Fig). In all three conditions, a second, weaker source was located at the

boundary between the insula and putamen (high-pain no rating: 25, 4, −4 mm, 1.3 nAm/cm3;

high-pain rating: −25, 11, 3 mm, 1.2 nAm/cm3; low-pain rating: −25, 11, 10 mm, 1.3 nAm/

cm3). The side of this second source, however, was different in the three conditions: in the no-

rating condition, it was located on the right hemisphere (i.e., contralateral to the hand

Fig 5. Pain sensitivity across individuals is reflected in the strength of neural entrainment: Phase. The across-participants variability in perceived

pain intensity was also reflected in the phase relationship between the entrained oscillations and the stimulus profile. For each individual, the mean of

high-pain (A-C), low-pain (D-F), or auditory (G-H) peak ratings was plotted against the phase difference between the 0.1-Hz oscillation at central

electrodes and the stimulus (“phase relation”). To evaluate this relationship, we fitted a single-cycle cosine function (red lines). Coefficient of

determination (R2) of the cosine fit was tested by random permutation of the phase across participants. Individuals who rated the nociceptive

stimulus as more painful entrained more closely to the phase of the nociceptive input (i.e., with a phase relation around 0). This relationship was

preserved not only within condition (B,F) but also across conditions (A,C-E). Importantly, such relationship was not present in the auditory

conditions (G-H). N = 30 participants. Data underlying these plots can be found in S1 Data. VAS, visual analogue scale.

https://doi.org/10.1371/journal.pbio.3000491.g005
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receiving the nociceptive stimulation), whereas in the rating conditions, it was located on the

left hemisphere (i.e., contralateral to the hand rating the perceived intensity).

Discussion

Here, we aimed to identify the neural activity present during tonic sensory stimuli that pro-

duce slowly fluctuating sensations. We delivered intensity-matched auditory and painful

Fig 6. Stimulus-induced neural oscillations outlast the rhythmic nociceptive input. The observation that neural oscillations

around 0.1 Hz continued after the end of the rhythmic nociceptive input provides additional evidence for a real neural

entrainment of ongoing EEG activity. (A) Temporal profile of the high-pain (red dotted line) and low-pain (yellow dotted line)

stimulation. (B-D) EEG signal at central electrodes was smoothed with a moving mean filter with a 2-second window, linearly

detrended, and finally averaged across participants (N = 30) in the conditions entailing high-pain stimulation without rating task

(B), high-pain stimulation with rating task (C), and low-pain stimulation with rating task (D). Shaded regions indicate the time

windows in which the EEG amplitude is significantly different from 0 (P< 0.05, point-by-point one-sample t test against 0, FDR

corrected across time points). Scalp maps show the t value topographies within 1-second window around the peak and trough of

each cycle. The similarity of scalp topographies at the peak of the cycle after the end of rhythmic stimulation with those of the

previous cycles further indicates self-sustained activity of the same underlying neural process. Plots on the right show that the

amplitude difference between the peak and trough of the cycle after the end of rhythmic stimulation was correlated to the mean

of the peak pain ratings across participants. Data underlying these plots can be found in S1 Data. EEG, electroencephalography;

FDR, false discovery rate; VAS, visual analogue scale.

https://doi.org/10.1371/journal.pbio.3000491.g006
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stimuli fluctuating at 0.1 Hz and observed that only painful stimuli resulted in both a power

enhancement and a phase locking of brain activity at the same frequency of the stimulus (Figs

2 and 3). Thus, this brain response was not supramodal and was possibly selective for the

somatosensory system. This response could reflect a true neural entrainment, since (1) the

degree of phase locking depended on the phase of ongoing brain oscillations occurring before

the onset of the rhythmic input (Fig 3D), and (2) the stimulus-induced brain oscillations out-

lasted the rhythmic input (Fig 6). Importantly, this neural entrainment to the rhythmic painful

input was not due to the rating task, as it was also present when participants did not have to

rate the painfulness of the stimuli (Figs 2 and 3). Finally, the strength of the neural entrainment

was correlated with pain sensitivity across individuals (Figs 4 and 5), a relationship that per-

sisted even in the neural activity outlasting the rhythmic stimulus (Fig 6).

These findings show that the brain encodes long-timescale dynamics of nociceptive input

through entrainment of ultralow-frequency neural oscillations. This work not only represents

a step toward analyzing brain processes in more clinically relevant models of long-lasting and

dynamic pain [15,16] but also sheds new light on the functional significance of neural oscilla-

tions at frequencies well below the traditional boundaries of human EEG rhythms.

Neural entrainment or evoked responses?

The power enhancement (Fig 2) and phase locking (Fig 3) of neural activities observed at the

frequency of nociceptive input could be explained by either repeated evoked responses or an

entrainment of ongoing neural oscillations to the rhythmic stimulus [6,7,46–52]. Albeit impor-

tant, distinguishing between these two different mechanisms is notoriously difficult, and

claims of entrainment are, unsurprisingly, highly debated [6,49].

Although specifically designed studies will be needed to adequately address the question of

whether the oscillations we observed reflect neural entrainment, our findings point toward

this interpretation. First, we found clear evidence that the degree of phase locking depended

on the phase of ongoing neural oscillations occurring before stimulus onset (Fig 3D). Indeed,

such phase interactions are predicted by theoretical models and experimental data of entrain-

ment of neural oscillators: although rhythmic stimuli drive brain activities, the effectiveness of

this process, reflected in the phase reorganization, also depends on the state of the neural oscil-

lators [33,38,53,54]. Second, as depicted in Fig 6, the neural oscillations outlasted the rhythmic

painful input. Furthermore, the similarity of scalp topographies of the oscillations during and

after rhythmic stimulation suggests common neural generators. This interpretation is corrobo-

rated by both theoretical and experimental studies [7,8,27,32,33,55–57] demonstrating that

entrained neural oscillations can be self-sustaining for a certain amount of time after the end

of external rhythm. Future experiments collecting poststimulus data for longer time intervals

will allow a more accurate characterization of the self-sustained activity. Such experiments

would also illustrate the recovery process of the oscillatory system from the entrained state.

This possible neural entrainment could reflect processing of nociceptive information that is

not captured by more widely used paradigms employing transient stimuli. Indeed, unlike tran-

sient responses that are discrete in time, the entrained oscillations are continuous and might

reflect an adaptive internal model of the input temporal regularities, which could facilitate sen-

sory processing of incoming events [1,2].

Neural entrainment to rhythmic painful input is independent of rating task

We observed neural entrainment to the rhythmic painful input regardless of whether partici-

pants were required to continuously rate pain intensity (Figs 2, 3 and 6, S3 Fig and S4 Fig).
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Continuous perceptual ratings are commonly used to investigate the neural correlates of

percepts occurring at long timescales (e.g., tonic experimental pain in healthy volunteers

[20,22,25] or spontaneous fluctuations of pain in chronic pain patients [12,13]). Such continu-

ous ratings are typically obtained with a finger-span device [12,13,22,25] or a slider [20].

Although such ratings provide valuable information on the dynamic fluctuations of percep-

tion, they heavily confound the analysis of neural data because of the superposition of brain

activities related to the motor and cognitive activity related to the rating task [58]. A strategy to

control for this confound is to ask participants to continuously rate the perceived intensity of

stimuli belonging to another sensory modality (e.g., vision) [12,13,22,25,59]: the brain activity

measured during painful but not visual stimulation should then reflect pain-selective activity.

This paradigm assesses whether the rating task is sufficient to explain the brain response sam-

pled during painful stimulation. However, it cannot resolve whether the same brain response

remains when no rating task is performed—that is, whether the rating task is necessary for

observing the brain response. To effectively address this issue, we included in our experiments

additional control conditions in which participants had to rate the intensity of neither the

auditory nor the painful stimuli.

Thus, our results demonstrate that rating-related brain activities were not necessary for the

observed entrainment of brain oscillations to the rhythmic painful input. Indeed, the power

enhancement, the phase locking, and the continuation of the entrained neural oscillations

after stimulus offset were also present in the pain condition not involving the rating task (Figs

2, 3 and 6, S3 Fig and S4 Fig).

Although we did not observe strong evidence for an effect of rating task at the stimulation

frequency of 0.1 Hz for either power or phase, the task of rating auditory stimuli enhanced the

power and the phase locking at 0.2 and 0.3 Hz (Figs 2B, 3A and 3B and S4 Fig). In contrast, rat-

ing of painful stimuli only slightly enhanced the phase locking at 0.2 and 0.3 Hz (S4 Fig). This

frequency and modality pattern suggests that the rating effect reflects a different mechanism

than the neural entrainment to the rhythmic input [48]. The fact that the increases and

decreases were more regular in auditory than in pain ratings (Fig 1) might explain why the

effect of rating auditory stimuli was more evident.

It is worth noting that, although the continuous intensity ratings tracked the temporal pro-

file of the rhythmic stimulation, they were generally delayed compared to the stimulus (Fig 1).

This was at least in part a natural consequence of our experimental task, in which participants

were asked to rate the intensity of the sensation elicited by the stimulus: the rating should, by

definition, occur after the stimulus has been perceived. This makes our experiment different

from the paradigms in which participants are asked to tap to, for example, musical beats [60],

resulting in movements aligned to or even preceding each beat.

Is the observed neural entrainment modality-specific?

As we discussed above, the entrainment of ultralow-frequency brain oscillations to stimulus

input was clearly not supramodal, given that (1) the power increase of EEG signal at stimulus

frequency was only consistently observed during nociceptive stimulation but not during loud

auditory stimulation (Fig 2), and (2) only the EEG signals during nociceptive stimulation

showed a predominant peak of phase locking at stimulus frequency (Fig 3). Importantly, these

findings by no means imply that the entrainment we observed during nociceptive stimulation

was modality-specific. Indeed, strictly speaking, demonstrating the pain specificity of a neural

response is virtually impossible, as it would require testing all stimuli that could, in principle,

elicit that response and show that that response only occurs when pain is experienced [16].

Instead, the current findings provide evidence that entrainment at the ultralow frequency used
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in this study occurs preferentially in response to somatosensory input. That the observed

entrainment is preferential to pain would require testing whether it occurs less strongly during

non-nociceptive somatosensory stimulation.

The lack of entrainment to the auditory stimuli is not trivial, since there is a considerable

amount of evidence for entrainment of neural oscillations to rhythmic auditory stimulation

[4,7,30,31,33,50]. This lack of entrainment to auditory input is unlikely to be a false negative,

as we have applied the same analysis pipeline to all experimental conditions from both modali-

ties and explored the results across all scalp electrodes. A possible explanation is that the fre-

quency of the delivered auditory stimulation is substantially lower than the timescale of

dynamics for which the auditory neural circuits are optimized. Indeed, the temporal structures

of speech and music largely occur in the subsecond range [3,61]. Accordingly, previous evi-

dence for auditory entrainment is primarily observed during stimulation at delta (0.5–4 Hz)

and theta (4–8 Hz) frequencies [7,8,30,33,62,63]. It is worth mentioning that there are previous

reports of auditory entrainment to, for example, tone pips [64], speech [65], or higher-order

rhythms [66,67] occurring at frequencies between 0.5 and 1 Hz. Still, to the best of our knowl-

edge, there is no evidence of auditory entrainment below 0.5 Hz.

These previous observations, together with the current results, suggest a different frequency

preference for oscillatory entrainment across sensory systems [68]. Why would the nociceptive

system respond to lower ranges of stimulus frequencies than the auditory system? Given that

the temporal dynamics of fluctuations of spontaneous pain and somatosensory detection

occur at very low frequencies [11,69], the brain representations of long-timescale variability

might be more essential and relevant to the processing of pain information. These consider-

ations suggest that neural entrainment is tuned to the temporal scale of the statistical regulari-

ties characteristic of different sensory modalities, a hypothesis that would require further

testing.

As a final remark, we note that some previous studies have shown that auditory entrain-

ment is task-dependent and requires top-down attention [7,31,70–72]. This makes the lack of

entrainment in our auditory rating condition more interesting, as high-intensity auditory sti-

muli were presented, and the rating task required continuous attention. Still, we cannot rule

out that in the presence of a more demanding task, auditory entrainment may appear, or that,

regardless of task, the stimulus parameters we used did not allow for auditory entrainment.

Thus, an interesting challenge for future research will be to test whether and how the effects of

task or attention change with stimulus parameters. It is also interesting that pain drives

entrainment regardless of task, whereas audition might need a task of a certain difficulty to do

so—an admittedly post hoc possible explanation is that pain is more necessarily related to

action [73].

The strength of neural entrainment reflects pain sensitivity across

individuals

We observed a clear relationship between perceived pain intensity and the strength of neural

entrainment to the nociceptive input. It is important to highlight that this is an across-partici-

pants relationship. Therefore, the presence of an oscillation at 0.1 Hz at a specific time point

does not necessarily indicate that there is, at that same time, pain. This is exemplified by the

fourth cycle of the entrained oscillations (Fig 6), occurring at a time when pain was close to

zero. Rather, we found that individuals with higher pain sensitivity had greater power

enhancement and phase locking at the frequency of the nociceptive input (Fig 4), as well as a

phase of the entrained oscillations closer to the phase of the nociceptive input (Fig 5). This is a

remarkable result, for two reasons. First, even the commonly observed within-participant
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correlation between nociceptive-evoked responses and subjective pain ratings have been

shown to be not obligatory—i.e., they can be easily disrupted by a large number of experimen-

tal manipulations (e.g., expectation, stimulus repetition, presentation of nonpainful but isosali-

ent stimuli, congenital insensitivity to pain; [74–76]). Second, almost all nociceptive-evoked

neural responses fail to track pain sensitivity across participants, in both human and animal

studies [40].

It is important to note that the relationship between entrainment and pain sensitivity across

participants was not driven by the rating task and was also present when examining conditions

entailing different intensities of nociceptive stimulation. Most notably, the relationship

between oscillatory amplitude and ratings persisted following the end of rhythmic stimulation

(Fig 6). Thus, the strength of neural entrainment to rhythmic nociceptive input is, in these

experimental conditions, a neural marker of pain sensitivity across individuals.

For clinical purposes, it is important to predict pain across different individuals [77–80].

For example, pain may need to be inferred for new patients when verbal reports are unavail-

able or unreliable, to optimize analgesic treatment and general care [79]. Including ultralow-

frequency neural entrainment in future pain prediction models may allow for better pain pre-

diction between individuals, especially for the more realistic situations in which pain fluctuates

as an ongoing percept.

Relevant to this discourse, a recent study revealed that brain oscillations in the gamma band

index the variability of pain sensitivity across individuals, in both humans and rodents [40].

However, the clinical relevance of that observation is limited because (1) gamma oscillations

were elicited by transient nociceptive stimuli causing painful sensations barely reflecting clini-

cal pain, and (2) because of low signal-to-noise ratio, gamma oscillations are hardly detected

in EEG recordings from single individuals. The ultralow-frequency oscillations we describe

here, in contrast, (1) are elicited by continuous and fluctuating nociceptive input causing

ongoing pain that better mimics spontaneous pain in patients and (2) can be detected in most

single participants (Figs 2D and 3B). Despite these distinctions, these high- and low-frequency

indicators of pain sensitivity across individuals could be related. Therefore, an interesting

direction for future research is to investigate whether the phase/frequency modulation of slow

oscillations and the power modulation of gamma (or other fast) oscillations work synergisti-

cally, e.g., to form a hierarchical structure supporting different spatial/temporal scales of brain

operation. This could be relevant to tracking and predicting the dynamics of pain, especially in

clinical situations [11–13].

Putative generators of the ultralow-frequency oscillations

Distributed source analysis revealed two brain generators of the stimulus-induced ultralow-

frequency oscillations: a strong source in the PCC and a second, weaker source at the bound-

ary between insula and putamen (S6 Fig). The possible functional significance of these sources

is briefly discussed below, bearing in mind the inherent uncertainty of source modeling of

scalp potentials. Indeed, given the infinite number of source configurations that can explain a

certain distribution of scalp data, the conclusiveness of these results is limited unless corrobo-

rated by other imaging methods.

The most notable aspect of the source results is that the PCC, the main generator of the

oscillations we described, is not part of the commonly-described generators of the transient

responses elicited by short and fast-rising nociceptive stimuli: the anterior portion of the cin-

gulate cortex, the bilateral operculoinsular cortex, and the contralateral primary somatosen-

sory cortex [75,81]. This difference in source configuration is not surprising, if one considers

that transient and fast-rising nociceptive stimuli evoke brain response reflecting the
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supramodal detection of salient events [75], a factor that we intended to avoid with the stimu-

lation paradigm used in the current study.

PCC, traditionally considered a hub of the default mode network [82,83], has been linked

to various cognitive functions (e.g., attention, learning, memory, reward processing; for

reviews, see [84,85]). Pearson and colleagues [85] proposed a framework in which the PCC

maintains and integrates information related to the statistical structure of dynamic environ-

ments and guides subsequent behavioral policy. This theory is in line with our interpretation

that stimulus-induced ultralow-frequency oscillations reflect an adaptive internal model that

retains the temporal regularities of sensory input and thereby allows the individual to meet the

demands of a changing environment. The second, weaker source at the boundary between the

insula and the putamen is consistent with the fact that the insula is one of the most frequently

activated regions in pain imaging studies [86]. The effect of the rating task on the side of this

second source suggests that its activity may also reflect motor planning or performance (which

was necessary for our rating task), as speculated in [87].

Materials and methods

Ethics statement

The study was approved by the ethics committee of University College London (project ID

2492/001) and conducted according to the principles expressed in the Declaration of Helsinki.

All participants gave written informed consent.

Participants

Thirty healthy human volunteers (18 women; mean age ± SD, 22.8 ± 2.9 years, age range 19–

30 years; all right-handed) participated in the study. They received monetary compensation

for their participation. Before taking part in the experiment, participants were familiarized

with the experimental setup and procedures.

Experimental procedures

Throughout the experiment, participants were seated comfortably in front of a table in a silent,

temperature-controlled room, with the palm of their left (nondominant) hand resting on the

table. Each participant received tonic nociceptive stimuli on the dorsum of their left hand, as

well as tonic auditory stimuli (see the Sensory stimuli section). In a number of trials of each

stimulus type (15 out of 30 high-pain stimuli, 15 out of 15 low-pain stimuli, and 15 out of 30

auditory stimuli), participants were instructed to continuously rate their perceived stimulus

intensity on a VAS ranging from 0 to 10 using a custom-built vertical slider controlled with

their right hand. The slider was connected to a potentiometer to record their ratings. For noci-

ceptive stimuli, the lower and upper ends of the slider were defined as “no pain” and “the max-

imum pain tolerable,” respectively. For the auditory stimuli, they were defined as “no sound”

and “the loudest sound tolerable.” Ratings were recorded from the onset of the periodic stimu-

lation and lasted for 30 seconds in auditory trials and 45 seconds in pain trials. Rating data

were digitized at 1,024 Hz (USB-1408FS, Measurement Computing Corporation, Norton, MA,

United States of America) and synchronized with stimulation triggers and EEG recordings. In

all trials, participants were instructed to focus their attention on the stimuli and keep their

gaze on a fixation cross placed centrally in front of them, at a distance of approximately 60 cm

and 30˚ below eye level. The order of stimulus presentation and rating task is detailed in S4

Table. The experimenters started trials manually after ensuring that the participant was ready

and instructed whether to rate the sensation. As a result, the time between the end of a trial
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and the beginning of the following trial ranged between 10.0 and 78.2 seconds (average 21.2

seconds). Participants were allowed to rest for approximately 2 minutes after every 15 trials.

Sensory stimuli

Nociceptive tonic stimuli were generated by a temperature-controlled CO2 laser stimulator

(Laser Stimulation Device, SIFEC, Ferrières, Belgium) with a wavelength of 10.6 μm and a

beam diameter of 6 mm. The output power of the laser was continuously regulated by a feed-

back control loop based on an online monitoring of skin temperature at the target site [88].

The laser stimulation target was changed after each stimulus to avoid nociceptor fatigue, sensi-

tization, and skin damage. Laser power modulation resulted in a 0.1-Hz sinusoidal modulation

of skin temperature, starting with an initial phase of π (i.e., trough) and lasting for 30 seconds

(Fig 1A). The temperature difference between peaks and troughs was 3˚C. Each participant

received laser stimuli of two intensity levels (high-pain and low-pain stimuli), individually

adjusted as described below. To avoid saliency-related brain responses during the periodic

stimulation, the skin temperature was first brought to the desired trough level in a 1-second

heating ramp and then maintained at this level for 5 seconds before the onset of the periodic

stimulation. After the periodic stimulation, the skin temperature was maintained at the trough

level for 10 additional seconds.

Before the experiment, stimulus temperatures were determined individually as follows.

First, pain detection threshold and pain tolerance were estimated. To measure the pain detec-

tion threshold, participants received linearly increasing stimuli at 1˚C/second (with a cutoff at

54˚C) on the dorsum of their left hand and were instructed to press a button with their right

hand as soon as they felt a painful sensation. The button-press immediately terminated the

stimulation. To measure the pain tolerance, participants were instructed to press the button as

soon as they felt the painful sensation become intolerable. The laser target on the skin was

changed after each stimulus. Both the pain detection threshold and pain tolerance were mea-

sured three times, in consecutive trials, and their corresponding temperatures were estimated

as the mean of the three consecutive measurements. The trough temperature of the low-pain

stimuli was set to 1˚C above the pain detection threshold, and the trough temperature of the

high-pain stimuli was set to 1˚C above that of the low-pain stimuli. The peak temperature of

the stimulus was always below the pain tolerance. The resulting peak temperature in the high-

pain stimuli was 48.3˚C ± 1.9˚C (mean ± SD across participants).

Auditory stimuli were generated by MATLAB (MathWorks, Natick, MA, USA) and pre-

sented through headphones binaurally. Auditory stimuli consisted of a pure tone (frequency

of 280 Hz) whose amplitude was sinusoidally modulated at 0.1 Hz for 30 seconds (Fig 1B). As

for the nociceptive stimulation, the sinusoidal modulation started with an initial phase of π
(i.e., trough). The sound intensity was individually adjusted to ensure that perceived intensity

was similar to the high-pain condition. Auditory stimuli were presented using the Psychophys-

ics Toolbox [89].

Analysis of subjective sensations

Single-trial rating time series were down-sampled to 512 Hz and smoothed using a moving

mean filter with a 1-second window. Filtered data were averaged across trials, for each partici-

pant and condition. The peak latency and amplitude of each rating cycle were measured from

the average waveforms. The rating peak latencies were measured with respect to the corre-

sponding peak latencies in the stimulus time series (i.e., 5, 15, and 25 seconds; Fig 1). A two-

way repeated-measures ANOVA with factors Condition (three levels: high pain, low pain, and

sound) and Cycle (three levels: cycle 1–3) was performed separately for the peak latency and
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amplitude. Post hoc paired-sample two-tailed t tests were performed when a significant

(P< 0.05) main effect or interaction was found (false discovery rate [FDR] corrected; the same

for post hoc tests described throughout the text).

EEG recording and preprocessing

EEG was recorded continuously using 128 Ag/AgCl electrodes (SD-128, Micromed S.p.A.,

Treviso, Italy) placed on the scalp according to the 10–5 system. The EEG signal was sampled

at 512 Hz, referenced to the nose, and filtered by an effective first-order, IIR causal high-pass

filter at 0.02 Hz, which resulted from a combination of physical and software filters, as imple-

mented in the Micromed system. Electrooculographic signals were simultaneously recorded

using two surface Ag/AgCl electrodes, one placed below the lower eyelid and one laterally to

the outer canthus of the right eye. Electrode impedances were kept below 10 kO.

EEG preprocessing was conducted using EEGLAB [90] and custom-written MATLAB

scripts. Continuous EEG data were notch filtered at 50 Hz and harmonics to remove power

line noise and then segmented into epochs ranging from −10 to 45 seconds relative to the

onset of the sinusoidal stimulation. Differences in EEG baseline across trials were removed by

demeaning each trial. EEG data were re-referenced to the common average. Signals contami-

nated by eye blinks, eye movements, or muscle activities were corrected using independent

component analysis [91]. Trials containing excessive signal fluctuations in at least one elec-

trode (amplitude exceeding ±500 μV) were excluded from further analyses. These trials consti-

tuted 4.6% of the total number of trials. The corresponding trials in the rating data were also

excluded.

Both frequency and phase measures of entrained neural oscillations can be confounded by

transient “evoked-type” responses that repeat at the stimulus frequency [6,7,46,48–51]. We did

observe a transient response (lasting approximately 0.5 to 2 seconds) locked to the increase of

auditory stimulation intensity (S7 Fig). Although interesting, this response could contaminate

our measures of ultralow-frequency neural oscillations at the stimulus frequency. We therefore

applied a cascade of filters at specifically defined scales in the time domain to both pain and

auditory trials, to minimize the potential confounding effects of such regularly occurring tran-

sient responses. We first denoised single-trial data after the above processing steps (s0) using a

moving mean filter with a 0.5-second window (s1). We then applied a 2-second median filter

and a Gaussian filter with full width at half maximum (FWHM) of 1 second to s1, yielding a

signal (s2) in which the transient responses were removed, whereas the long-period signals

were kept. Finally, we reconstructed the EEG signal (s’, without the transient responses) as s’ =

s0 –s1 + s2. This algorithm was effective in removing the transient responses while leaving

other features of the signal largely intact (S7 Fig). Thus, the power increase and phase locking

of the EEG responses revealed by the following analyses were most likely due to a true 0.1-Hz

oscillation rather than transient responses that repeated at this frequency. It is also worth not-

ing that although the above-mentioned filters are acausal, their length was too short to affect

prestimulus analyses of 0.1-Hz oscillations (i.e., those analyses whose results are shown in Fig

3D).

Power analysis of EEG data

A fast Fourier transform was applied to single-trial signals ranging from 0 to 30 seconds after

the onset of the sinusoidal stimulation, yielding power spectra with a frequency resolution of

0.0333 Hz (a frequency resolution of 0.01 Hz, i.e., spectral interpolation, was achieved by zero

padding in the time domain and was used for illustrative purposes). Power estimates were log-

transformed and averaged across trials for each participant and condition. To reveal the
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frequency of power increases, for each participant, condition, electrode, and frequency point,

the contribution of background activities (e.g., spontaneous brain activities or slow eye move-

ments) was removed by subtracting the average power at surrounding frequencies (−0.0333

Hz and +0.0333 Hz) [20,36,37]. Scalp topographies of this BSP were computed by spline

interpolation.

To identify the frequencies at which power increase occurred, a one-sample one-tailed t test

was performed at each frequency point to test whether the BSP was consistently greater than

zero across participants (FDR corrected for multiple comparisons across frequencies). This

analysis was first performed on signals from a central electrode cluster (Cz and its closest

neighbors FCC1h, FCC2h, CCP1h, and CCP2h) and then extended to all electrodes (FDR cor-

rected for multiple comparisons across frequencies and electrodes). An additional one-sample

one-tailed t test was performed separately for each participant and condition, to examine

whether the BSP at 0.1 Hz in the central electrode cluster was consistently greater than zero

across single trials.

To test the effects of modality and rating task on the power increase detected at 0.1 Hz, we

conducted, for each electrode, a two-way repeated-measures ANOVA with factors Modality

(two levels: high pain and sound) and Rating (two levels: rating and no rating) on 0.1-Hz BSP

(FDR corrected for multiple comparisons across electrodes). Post hoc paired-sample two-

tailed t tests were performed when a significant main effect or interaction was found.

Phase analysis of EEG data

We examined the phase locking of the EEG signal (0–30 seconds) across trials by calculating the

ITPC [92] for each participant, condition, and electrode. Briefly, given the Fourier phase φn for

trial n, we define the mean vector of phase angles across trials as m ¼ N � 1
PN

n¼1
eiφn , where N is

the number of trials. The ITPC value is given by the modulus of m, i.e., ITPC = |m|. To deter-

mine at which frequencies phase locking occurred, we evaluated the ITPC as a function of fre-

quency by calculating the ITPC values in steps of 0.0333 Hz (a frequency resolution of 0.01 Hz

was achieved as described in the previous section). ITPC scalp topographies were computed by

spline interpolation. For each participant, the significance of ITPC was determined using the

Rayleigh’s test for circular uniformity (P< 0.05) [39]. The percentage of participants with sig-

nificant ITPC was calculated for each frequency point, electrode, and condition.

To further assess the significance of the ITPC at the group level (i.e., whether ITPC was

greater than what one would expect by chance), the mean ITPC across participants and the

percentage of participants with significant ITPC were compared to randomized data. Specifi-

cally, we added random phase values drawn from circular uniform distribution to the single

trial phases, recalculated the ITPC for each participant, and determined its significance using

the Rayleigh’s test. We then computed the mean ITPC across participants and the percentage

of participants with significant ITPC. This process was repeated 1,000 times, yielding null dis-

tributions of the mean ITPC and of the percentage of participants with significant ITPC. P val-

ues of the actual data were determined by comparing the mean ITPC and percentage of

participants to the respective null distributions. This analysis was also first conducted for the

0.1-Hz oscillation in the central electrode cluster and then extended to other frequencies and

electrodes (FDR corrected for multiple comparisons across frequencies and electrodes).

To test the effects of modality and rating on the ITPC at 0.1 Hz, for each electrode, we per-

formed a two-way repeated-measures ANOVA with factors Modality (two levels: high pain

and sound) and Rating (two levels: rating and no rating) (FDR corrected for multiple compari-

sons across electrodes). Post hoc paired-sample two-tailed t tests were performed when a sig-

nificant main effect or interaction was found.
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To examine the dependence of the degree of phase locking on the phase of oscillations

occurring before stimulus onset, we applied a causal, linear-phase bandpass FIR filter with

cutoff frequencies at 0.05 and 0.15 Hz to single-trial EEG signals from the central electrode

cluster and then extracted the instantaneous phase of the filtered signals using the Hilbert

transform. The causal filter was used to avoid the influence of signals after stimulus onset on

the prestimulus phase. We sorted the single trials into six bins from 0 to 2π according to the

instantaneous phase at time 0 in the filtered signal. Within each participant, we pooled rating

and no-rating trials from the same modality, to increase the number of trials in each bin. We

then calculated 0.1-Hz ITPC during the sinusoidal stimulation (0–30 seconds) using the phase

obtained from the Fourier transform for the trials within each bin, separately for each partici-

pant and modality. Since the number of trials influences ITPC (i.e., fewer trials are more likely

to have a greater ITPC value) [93], to correct for differences in the number of trials between

bins and modalities, we transformed the ITPC to ITPCz (Rayleigh’s Z) according to the for-

mula ITPCz = N�ITPC2, where N is the number of trials for each ITPC calculation, as previ-

ously recommended [94–96]. Since the causal filter introduced a 5-second delay in the filtered

signal (i.e., one-half cycle of a 0.1-Hz oscillation), to represent the relationship for the phase at

time 0 in the original ultralow-frequency oscillation without time delay, we added π rad (i.e.,

one-half cycle) to the phase at time 0 in the filtered signal. Given that the same value was

added to all trials, this procedure did not have any effect on the following statistical analyses;

importantly, this procedure did not shift the filtered signal and did not introduce noncausality.

We performed a two-way repeated-measures ANOVA on the ITPCz with factors Bin (six

levels: equal-sized bins from 0 to 2π) and Modality (two levels: pain and sound). Post hoc

paired-sample two-tailed t tests were performed when a significant main effect or interaction

was found. Finally, in addition to the ITPC analyses based on the Fourier phase, we also calcu-

lated ITPC using the above-mentioned instantaneous phase to show how ITPC fluctuates over

time.

Analysis of relationship between the strength of neural entrainment and

perceived pain intensity across individuals

For each condition entailing a rating task, we calculated across-participant Pearson correlation

coefficients between the intensity rating at each time point in the rating time series and the

0.1-Hz BSP as well as the 0.1-Hz ITPC in the central electrode cluster, yielding time series of

the correlation coefficient r and the P value (FDR corrected for multiple comparisons across

time points). To test whether the correlations were consequent to the rating task, we per-

formed the same correlation analyses between the intensity ratings and the BSP/ITPC mea-

sured in the conditions without rating task. Finally, the same correlation analyses were also

performed between conditions entailing different intensities of nociceptive stimulation.

For each participant and condition, we calculated the phase of the entrained 0.1-Hz oscilla-

tions as the orientation of the above-defined mean vector m (i.e., arg[m]). To evaluate the

across-participant relationship between the intensity rating and the phase of entrained oscilla-

tions, we fitted a single-cycle cosine to the participant-mean peak rating (i.e., the peak rating

averaged across the three cycles) as a function of the phase of 0.1-Hz oscillations in the central

electrode cluster. Significance of the cosine fit was estimated with permutation testing: we ran-

domly permuted the phase values across participants, fitted a cosine function, and calculated

the coefficient of determination R2 as a measure of the goodness of fit. This procedure was

repeated 1,000 times, yielding null distribution of the R2. The P value of R2 obtained from the

actual data was determined by comparing it to the null distribution. This analysis was per-

formed between intensity rating and 0.1-Hz phase within each condition entailing the rating
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task, between intensity rating and 0.1-Hz phase in the conditions without rating task, and

between conditions entailing different intensities of nociceptive stimulation.

To ensure that the results from the above analyses were not due to individual variability in

stimulus temperature, we performed similar analyses but using stimulus temperature instead

of ratings, and also analyzed the correlation between stimulus temperature and pain ratings.

Thus, we analyzed across-participant relationships between the laser stimulation temperature

and (1) mean peak pain rating (i.e., the peak rating averaged across the three cycles), (2) the

BSP, (3) the ITPC, and (4) the phase of 0.1-Hz oscillations in the central electrode cluster.

We further investigated the contribution of the 0.1-Hz BSP, ITPC, and phase difference in

explaining the rating variance across participants. We first calculated the correlation between

any two of the three explanatory variables (absolute value of the phase difference between the

0.1-Hz oscillation and the stimulus |ΔPhase| is used here), for each of the three pain condi-

tions. We found evidence for correlation in all pairs except in the relationship between BSP

and |ΔPhase| in the low-pain rating condition, and a suggestion of a correlation between ITPC

and |ΔPhase| in the high-pain no-rating condition (S2 Table). Since the correlations were not

too high (correlation coefficients are<0.8, a prerequisite for performing multiple linear

regression [97]), we performed multiple linear regression and computed adjusted R2 and the

AIC [41] for regression models containing different combinations of the explanatory variables.

These analyses were performed for each pain condition and separately for the ratings of the

high-pain and low-pain stimulation as the dependent variable. The adjusted R2 provides infor-

mation on the explanatory power of each model. The AIC was used to compare the model fit

performance. Specifically, we calculated the difference between the AIC of each model and the

minimum AIC in all models (ΔAIC). Based on ΔAIC, we further calculated the Akaike weights

wi, as wi ¼
expð� DAICi=2ÞPM

m¼1
expð� DAICm=2Þ

, where M is the number of models to be compared, and i is the

index of a given model. We finally used these wi weights as a measure of strength of the evi-

dence in favor of the respective model [42].

Analysis of neural oscillations outlasting the stimulus

The EEG time series from each individual was denoised using a moving mean filter with a

2-second window and linearly detrended. It should be noted that (1) no zero padding was

used at the signal edges, and (2) because of its length, this 2-second moving mean filter, though

acausal, cannot produce an oscillation lasting for at least 10 seconds after stimulus offset (Fig

6). Therefore, our observation that the brain oscillations outlasted the stimulus cannot be

explained by the temporal smoothing. A one-sample two-tailed t test of EEG amplitude against

zero was performed at each point of the time series (FDR corrected for multiple comparisons

across time points). Scalp topographies of the t value were computed over a 1-second window

centered around the peak and trough of each cycle. Finally, Pearson correlation coefficients

were calculated across participants between the mean peak rating and the peak-to-trough

amplitude of the cycle occurring after the sinusoidal stimulation in the central electrode

cluster.

Source modeling of the stimulus-induced oscillations

We estimated the brain generators of ultralow-frequency oscillations using CLARA [43–45], a

distributed source analysis approach. Specifically, the scalp topography of the amplitude of

each of the three peaks of the stimulus-induced oscillations was extracted from group-mean

waveforms, averaged across the three cycles, and imported into the Brain Electrical Source

Analysis software (BESA Research version 5.3; MEGIS Software GmbH, Gräfelfing, Germany).
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A voxel size of 7 mm in Talairach space, singular value decomposition regularization with a

cutoff of 0.15%, and three iterations were used to perform the CLARA source analysis [43].

The same analysis was also performed on the scalp topography of the mean amplitude of the

three troughs of the oscillations. The source-space results from the mean amplitude of the

peaks and the mean amplitude of the troughs were finally averaged. This procedure was per-

formed separately for the three conditions showing a clear entrainment (high-pain no rating,

high-pain rating, and low-pain rating).

Supporting information

S1 Text. Supplementary psychophysical results.

(DOCX)

S1 Table. Across-participants relationship between stimulation temperature and pain rat-

ings, as well as between stimulation temperature and different features of neural entrain-

ment at 0.1 Hz.

(DOCX)

S2 Table. Across-participants relationships of the 0.1-Hz BSP, ITPC, and phase difference

between the entrained oscillation and the stimulus. BSP, background-subtracted power;

ITPC, intertrial phase coherence.

(DOCX)

S3 Table. Comparison of the seven linear regression models that explain pain rating vari-

ance across participants.

(DOCX)

S4 Table. Order of stimulation trials.

(DOCX)

S1 Fig. EEG time series from an evenly-spaced set of electrodes (each electrode is in a dif-

ferent column). The signals were smoothed with a moving mean filter with a 2-second win-

dow and averaged across participants (N = 30). Note the lack of a clear oscillation around 0.1

Hz in the auditory conditions (two bottom rows). Data underlying these plots can be found in

S1 Data. EEG, electroencephalography.

(TIF)

S2 Fig. Absolute EEG spectra during the rhythmic nociceptive (left) and auditory (right)

stimulation in the central electrode cluster. The central electrode cluster included Cz and its

closest neighbors FCC1h, FCC2h, CCP1h, and CCP2h. Shaded regions indicate SEM across

participants (N = 30). The vertical dashed line indicates the frequency of stimulation. Data

underlying these plots can be found in S1 Data. EEG, electroencephalography; SEM, standard

error of the mean.

(TIF)

S3 Fig. Topographies of EEG power enhancement at different frequencies. Topographies of

t values show strong evidence of EEG power enhancement (expressed as BSP) at 0.1 Hz in cen-

tral scalp regions, only in the conditions with nociceptive stimulation. Colors indicate scalp

electrodes where the BSP had P< 0.05 (one-sample t test against 0, FDR corrected across elec-

trodes and frequencies). Electrodes with P> 0.05 are masked with white. N = 30 participants.

Data underlying these plots can be found in S1 Data. BSP, background-subtracted power;

EEG, electroencephalography; FDR, false discovery rate.

(TIF)
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S4 Fig. Topographies of EEG phase locking at different frequencies. Topographies showing

strong evidence of EEG phase locking at 0.1 Hz in central scalp regions (using two measures:

mean ITPC, panel A; percentage of participants with significant ITPC, panel B), mostly in the

conditions with nociceptive stimulation. There was a weak suggestion of phase locking at 0.2

and 0.3 Hz in the auditory condition that also entailed rating. Colors indicate scalp electrodes

where the phase locking was greater than chance level (comparison with randomized data;

P< 0.05, FDR corrected across electrodes and frequencies). Electrodes with P> 0.05 are

masked with white. N = 30 participants. Data underlying these plots can be found in S1 Data.

EEG, electroencephalography; ITPC, intertrial phase coherence; FDR, false discovery rate.

(TIF)

S5 Fig. ITPC calculated with instantaneous phase from the central cluster of electrodes.

Note the building up of phase locking over time. Shaded regions around the solid lines indicate

SEM across participants (N = 30). Data underlying these plots can be found in S1 Data. ITPC,

intertrial phase coherence; SEM, standard error of the mean.

(TIF)

S6 Fig. Distributed source analysis of ultralow-frequency oscillations. Sources were esti-

mated using CLARA and superimposed on the BESA standard MRI template. In all three con-

ditions entailing nociceptive stimulation, CLARA estimated two sources: the strongest source

was consistently located in the posterior cingulate cortex (left column), whereas the second,

weaker source was at the boundary between the insula and putamen (right column). A, ante-

rior; BESA, Brain Electrical Source Analysis; CLARA, classical LORETA analysis recursively

applied; Cor, coronal; L, left; P, posterior; R, right; Sag, sagittal; Tra, transverse.

(TIF)

S7 Fig. Minimizing the confounding effect of transient responses observed during auditory

stimulation with rating. (A) EEG signal recorded at electrode Fz (the electrode showing the

largest transient response) during auditory stimulation with rating condition, averaged across

participants (N = 30). Transient responses are visible during each of the three increases of

stimulus intensity (blue line, uncorrected signal). The correction algorithm (see Materials and

methods) effectively suppressed these transient responses while leaving other features of the

signal largely intact (red line, corrected signal). Insets show magnified views of the regions

indicated by rectangles. (B) Same as (A), but showing signal from a participant with clear tran-

sient responses. (C) EEG signal recorded at electrode Cz during high pain with rating condi-

tion, averaged across participants. Note the lack of the transient responses observed in the

auditory condition: the correction algorithm barely affected the recorded signal. (D) Same as

(C), but showing signal from a single participant. Data underlying these plots can be found in

S1 Data. EEG, electroencephalography.

(TIF)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying data for Fig 1,

Fig 2, Fig 3, Fig 4, Fig 5, Fig 6, S1 Fig, S2 Fig, S3 Fig, S4 Fig, S5 Fig and S7 Fig.

(ZIP)
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