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Abstract

Spatial EEG filters are widely used to isolate event-related potential (ERP) components. The most commonly used spatial filters
(e.g., the average reference and the surface Laplacian) are “stationary.” Stationary filters are conceptually simple, easy to use,
and fast to compute, but all assume that the EEG signal does not change across sensors and time. Given that ERPs are intrinsi-
cally nonstationary, applying stationary filters can lead to misinterpretations of the measured neural activity. In contrast, “adapt-
ive” spatial filters (e.g., independent component analysis, ICA; and principal component analysis, PCA) infer their weights directly
from the spatial properties of the data. They are, thus, not affected by the shortcomings of stationary filters. The issue with
adaptive filters is that understanding how they work and how to interpret their output require advanced statistical and physiolog-
ical knowledge. Here, we describe a novel, easy-to-use, and conceptually simple adaptive filter (local spatial analysis, LSA) for
highlighting local components masked by large widespread activity. This approach exploits the statistical information stored in
the trial-by-trial variability of stimulus-evoked neural activity to estimate the spatial filter parameters adaptively at each time point.
Using both simulated data and real ERPs elicited by stimuli of four different sensory modalities (audition, vision, touch, and pain),
we show that this method outperforms widely used stationary filters and allows to identify novel ERP components masked by
large widespread activity. Implementation of the LSA filter in MATLAB is freely available to download.

NEW & NOTEWORTHY EEG spatial filtering is important for exploring brain function. Two classes of filters are commonly used:
stationary and adaptive. Stationary filters are simple to use but wrongly assume that stimulus-evoked EEG responses (ERPs) are
stationary. Adaptive filters do not make this assumption but require solid statistical and physiological knowledge. Bridging this
gap, we present local spatial analysis (LSA), an adaptive, yet computationally simple, spatial filter based on linear regression that
separates local and widespread brain activity (https://www.iannettilab.net/lsa.html or https://github.com/rorybufacchi/LSA-filter).

EEG components; electroencephalography (EEG); event-related potentials (ERPs); referencing; spatial filtering

INTRODUCTION

Event-related potential (ERP) experiments are conducted
to investigate how the central nervous system processes sen-
sory, motor, or cognitive events. ERPs comprise several com-
ponents that often reflect the activity of distinct cortical
generators (1). Because these components overlap in time
and space, isolating them requires spatial filtering, a mathe-
matical procedure that changes the EEG voltage value at
each electrode according to a weighted combination of volt-
age values at two or more other electrodes. There are two
types of spatial filters, “stationary” and “adaptive.”

Stationary spatial filters do not change across time and
space because their weights are defined a priori (Fig. 1). The
most widely used stationary spatial filters are the vertex ref-
erence (VR; subtracting from each electrode the activity of

Cz) (2–8), the average reference (AR; subtracting the average
of all electrodes) (1, 9, 10), the surface Laplacian (SL; second-
order spatial derivatives) (10, 11), and the contralateral differ-
ence (CD; subtracting from a given electrode the activity of
its symmetrical electrode with respect to the sagittal midline,
e.g., C3 minus C4) (10, 11). The popularity of these methods
stems from their immediacy: they are conceptually simple,
easy to use, and fast to compute. The problem is that they all
assume that the EEG signal is stationary, i.e., that it does not
change across sensors and time. Nonstationarities, however,
are the essence of ERP recordings. They are exactly the
troughs and peaks observed in the time course and the scalp
maps of the EEG responses. Several groups have shown that
applying stationary spatial filters to EEG nonstationarities
can lead to misinterpretations of the measured activity (1, 6,
12–14).
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Adaptive spatialfilters, in contrast, infer their weights directly
from the spatial properties of the data, and thus do not present
the shortcomings of stationary filters (15). Commonly used
adaptive filters are principal component analysis (PCA; extract-
ing the components that explainmost of the variance in the sig-
nal) (16, 17), independent component analysis (ICA; extracting
components that are statistically independent) (18–21), as well as
source localization techniques, such as beamforming (identify-
ing likely brain sources) (15, 22). The issue with these adaptive
filters is that using them is not trivial. Understanding how they
work and how to set the necessary parameters requires
advanced statistical and physiological knowledge. These filters
estimatemany components or sources thatmust be sorted, cate-
gorized, or matched to anatomical models. In addition, they are
computationally intensive. Thus, researchers often refrain from
using the adaptive techniques for extracting physiologically rele-
vant neural components and settle for the simpler but less effec-
tive stationary alternatives.

In this work, we propose a new adaptive filter specifically
designed for highlighting local ERP components masked by

large widespread activity. Despite being adaptive both in time
and space, this approach is easy to use and conceptually sim-
ple. The core idea is to exploit the information available in the
trial-by-trial variability of stimulus-evoked neural activity.
Far from being noise, this variability is largely due to the ac-
tivity generated by the brain itself (23–25) and contains pre-
cious information about the brain activity that results in the
EEG signal at different sites (24, 26). The filter that we propose
specifically exploits these trial-by-trial fluctuations when there
is a widespread EEG source captured at multiples sites (Fig. 2).
This source produces trial-by-trial fluctuations that are neces-
sarily correlated at the two sites, as the propagation of an elec-
trical field is virtually instantaneous (10). Widespread sources
are not the only cause of correlated variability. Two local sour-
ces can also produce correlated trial-by-trial fluctuations at far-
away sites, for example, when two cortical sources are driven
by the activity of a third subcortical structure. In this case, how-
ever, we also expect to observe uncorrelated trial-by-trial fluc-
tuations reflecting, among others, nonshared input, intrinsic
variability of each generator, or the differential effect of neuro-
modulators on different generators.

These considerations suggest that extracting at each elec-
trode the part of EEG signal that is statistically independent to
thewidespread activity could highlight local ERP components,
despite the presence of a concomitant widespread activity. We
propose that this goal can be achieved with a novel approach
based on simple linear regression, and that we call local spatial
analysis (LSA). LSA is not designed to filter the entire ERP
waveform. Instead, it should be used on the time window of
the ERP waveform within which a widespread scalp potential
is present. The influence of that widespread activity is then
linearly regressed out of the signal, across trials, at all record-
ing sites. The resulting filtered EEG signal will consequently
show local activities that were previously masked by the wide-
spread potentials, and that have different trial-by-trial variabil-
ity to the widespread potential. We use both simulated and
real ERP data elicited by auditory, nociceptive somatosensory,
nonnociceptive somatosensory, and visual stimuli, to show
how LSA outperforms widely used stationary filters in identi-
fying local ERP components.

METHODS

Stationary Spatial Filters

Figure 1 shows a summary of the commonly used station-
ary spatial filters.

Vertex reference.
The vertex reference (VR) subtracts the EEG signal at Cz
from the activity at each electrode (6). The output of the filter
at Cz is therefore zero (Fig. 1, first row).

Average reference.
The average reference (AR) subtracts the average activity of
all EEG electrodes from the activity of each electrode (10)
(Fig. 1, second row).

Surface Laplacian.
The surface Laplacian (SL) is a second-order spatial derivative.
Several approximations for the SL have been developed for
EEG analysis (11), and research on the topic is ongoing (27).
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Figure 1. Overview of stationary filters. Stationary filters use weights
defined a priori. Each row shows these weights for a type of stationary filter.
Each column shows the weights applied to a number of representative
electrodes. Nonzero weights are plotted in color. When the filters are
applied to the data, these weights are multiplied by the voltage at each
channel. The resulting weighted voltage values constitute the filter outputs.
In the vertex reference (first row) the signal at Cz is subtracted from the sig-
nal of each given electrode. Therefore, for each electrode, the VR filter has
two non-zero weights: the weight of the electrode of interest is 1, and the
weight of electrode Cz is �1. In the average reference (second row) the av-
erage signal across all N electrodes is subtracted from each given elec-
trode. Therefore, 1� 1/N is the weight for the electrode of interest and 1/N is
the weight for all other electrodes. In the surface Laplacian (third row) a
weighted local combination of signal is subtracted from each given elec-
trode. Finally, the contralateral difference (bottom row) computes the signal
difference between each given electrode and its symmetrical electrode
with respect to the sagittal midline. Color axes represent electrode weights.
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These approximations replace the voltage at each electrode
with a weighted sum of a combination of the voltage at the
electrode of interest and its neighboring electrodes (Fig. 1,
third row; this operation can be imagined as spatially convolv-
ing a basis function given by the weights with the EEG data).
SL has several appealing theoretical qualities, such as reducing
volume conduction effects, and thus attenuating widespread
activities (10). Here, we applied the method described by
Perrin et al. (28), with smoothing factor equal to 10�5, order of
the Legendre polynomials equal to 80, and spherical spline
order equal to 3. These are standard parameters for performing
a surface Laplacian with the EEG setup used in this study (29).

Contralateral difference.
The contralateral difference (CD) subtracts from the EEG sig-
nal of each electrode the signal of the electrode symmetrical
with respect to the sagittal midline (e.g., C3 minus C4, or P7

minus P6) (1, 30). The voltage at all electrodes on the sagittal
midline is, therefore, zero (Fig. 1, fourth row).

Adaptive Spatial Filters

Independent component analysis.
Independent component analysis (ICA) attempts to decom-
pose the EEG signal into statistically independent compo-
nents (ICs). Several implementations of this approach exist
(31). We applied the extended-ICA method implemented in
EEGLAB (32, 33).

Principal component analysis.
Principal component analysis (PCA) attempts to extract
the components that explain most of the signal variance
(16, 17). We used the singular value decomposition
approach implemented in the standard MATLAB statis-
tics toolbox.
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Figure 2. Performance of local spatial analysis (LSA) on simulated event-related potential (ERP) data containing a central widespread component and a
lateralized local component. Left: EEG topographies were generated as a widespread component at Cz plus a local negative component at C3. Right: by
exploiting the information contained in the trial-by-trial variability of the simulated data, LSA returns a scalp topography virtually identical to that of the
original local component. Commonly used stationary filters (vertex reference, average reference, surface Laplacian) failed to highlight the local compo-
nent. Only the contralateral difference returned a negativity in the left hemisphere, although it also created a spurious positivity in the contralateral hemi-
sphere. Color axes represent voltage (mV).
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Local Spatial Analysis

Given the EEG signals SA and SB, measured at two electro-
des A and B at a given time point, LSA uses a simple linear
regression of SA on SB to highlight the local activity at A. For
the results of LSA to be interpretable, some assumptions
must hold. First, we assume that we can write the signals at
SA and SB as the sums of widespread and local contributions:

SB ¼ WB þ LB

and

SA ¼ k �WB þ LA:

WB denotes the part of the signal measured at electrode B,
which is produced by the source of a widespread component.
We assume that the amplitude and trial-by-trial variation of
this component are maximal at electrode B. Therefore, �1 <
k < 1 is a scaling factor that reflects the assumption that the
widespread field is smaller at electrode A than at electrode B.
LA and LB are the local components at A and B, and thus do
not respectively contribute to SB and SA.

We denote with cov �; �f g and var �f g the covariance and
variance operators, respectively. The larger var WBf g is, the
closer the following approximation becomes:

k � cov SA; SBf g
var SBf g ¼ k

0
:

Thus, if the widespread component is large enough,

SA � k
0 � SB � SA � k � SB ¼ LA � k � LB:

Then, because jkj<1, and assuming LB is small, we have
that

SA � k
0 � SB � LA:

In other words, LSA can regress widespread components
out of the signal because of their trial-by-trial variability.
This reveals local activities. However, if the widespread ac-
tivity does not vary from trial to trial, or is not present in the
first place, there is nothing to regress out.

Figure 3 illustrates how LSA works on real EEG data. First,
we identify, in the group-average response, the time inter-
vals with a large widespread scalp activity (in the example
shown in Fig. 3, a negativity). We then select the electrode
Elmax at which this widespread activity has maximal ampli-
tude (in the example shown in Fig. 3, electrode Cz). The fur-
ther implicit assumption is that components with large
amplitude will also have large trial-by-trial variability.
Subsequently, we linearly regress out the signal at Elmax

from each other electrode. It is important to note that the
estimation of k and the linear regression are performed sepa-
rately for each time point, electrode, and subject. Thus, the
proposed filter is adaptive both in time and space. The esti-
mation is performed using the statistical information avail-
able in the distribution of the trials recorded from a single
subject. We suggest that at least 20–30 trials per subject are
necessary for the estimation to be robust, and all trials
should be collected under the same stimulation condition.
LSA is theoretically simple, easy to use, and can be freely
downloaded from https://www.iannettilab.net/lsa.html or
https://github.com/rorybufacchi/LSA-filter. For a tutorial on
how to set up the plugin, see https://www.youtube.com/
watch?v=-Il3Qhfurnk.

Themathematical simplicity of LSA leads to very short com-
putational times: when performed on real data fromone partic-
ipant, the call to the LSA function took 8.3±4.5ms to run,
whereas AR took 8.1±4.5ms to run (100 repetitions, using a
machine with Intel(R) Core i7-8750H CPU @ 2.20GHz, 32GB
RAM).

Simulated EEG Data

We simulated EEG data sampled from 120 electrodes,
according to the International 10-5 system, as follows. At
each electrode the EEG signal was the sum of a widespread
and of one or more local fields (Fig. 2). The widespread field
was modeled as an inverted 2-D Gaussian with a negative
peak of �20mV at Cz and a standard deviation of half a cap
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Figure 3. Procedure for filtering EEG data using local spatial analysis
(LSA). The filter is applied to real laser-evoked event-related potentials
(ERPs). Step 1: first, the electrode at which the widespread N2 component
is maximal in amplitude is identified in the grand average scalp map se-
ries. In this example, the electrode is Cz. Second, the time interval includ-
ing the widespread signal (i.e., the interval during which most of the
electrodes have the same polarity) is selected. In this example, the interval
is 130–220ms. Step 2: LSA exploits the different trial-by-trial variability of
the local vs. the widespread component, and thereby removes the activity
from the identified electrode (Cz) from all other electrodes. This is done
separately for each subject and time point. The last row shows the com-
parison of the topography at the same time point (in this example, 160ms)
before and after filtering with LSA. Color axes represent voltage (mV).
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radius (the cap radius is �14.7 cm, computed as the maximal
distance between any electrode and Cz). The local field had a
negative peak of �1mV at either Cz or Fz, depending on the
case considered, and a standard deviation of 20% of the cap
radius. When we added two additional local fields, their
peaks were of þ 1mV and�0.7mV, and standard deviations of
20% and 30% of the cap radius, respectively.

We included three types of variability in the simulated
responses. The first type of variability was changes in the
amplitude of the widespread and the local sources. This vari-
ability was modeled using multiplicative random noise
(Gaussian distribution, mean= 1, standard deviation= 1).
This noise was added independently to the widespread and
to the local components and to each trial. The second type of
variability was overall electrical or neural variability. This
variability was modeled as additive noise (Gaussian distribu-
tion, mean=0mV, standard deviation= 1mV). This noise was
added identically to each electrode, separately for each trial.
The third type of variability was differences in electrode con-
ductance. This variability wasmodeled asmultiplicative noise
(Gaussian distribution, mean=1, standard deviation=0.05).
This variability was added separately to each electrode but
identically for each trial. Forty trials were generated. To test
the robustness of the filter to higher levels of noise, we ran
four additional simulations, where we multiplied all sources
of nonneural noise by factors of 2, 4, 6, and 8.

Recorded EEG Data

Recorded EEG data were reported in Mouraux and
Iannetti (21) and Liang et al. (19), where detailed information
about the data collection and experimental paradigm can be
found. Here, we only provide a short summary of research
participants, employed stimuli, experimental procedure,
and EEG recording.

Participants.
Nineteen healthy volunteers (2 females; aged 25±6years; 1
left-handed) took part in the studies. Before the electrophysi-
ological recording, participants were familiarized with the
experimental setup. They were also exposed to a small num-
ber of test stimuli (5–10 stimuli for each stimulus type). All
experimental procedures were approved by the local Ethics
Committee. Written informed consent was obtained from all
participants.

Experimental procedure.
The experiment took place in a dim, quiet, and temperature-
controlled room. Participants were seated in a comfortable
armchair placed in front of a desk. They were told to relax,
minimize eye blinks, and keep their gaze fixed on a white
cross (3 � 3 cm) placed centrally in front of them, at an eye
distance of �40cm. Brief stimuli of different sensory modal-
ities (auditory, nociceptive somatosensory, nonnociceptive
somatosensory, and visual) were intermixed and randomly
delivered to or near the dorsum of the right hand to ensure
that differences in the recorded responses were not related
to differences in spatial attention. In Liang et al. (19), stimuli
were also separately delivered to or near the dorsum of the
left hand. Furthermore, in Liang et al. (19), somatosensory
stimuli were only nonnociceptive. Only one stimulus belong-
ing to one stimulus modality was presented on each trial.

Stimuli were presented in four successive blocks. The inter-
stimulus interval varied randomly between 5 s and 10s (rec-
tangular distribution). Each block was separated by a 3- to 5-
min break. To ensure that vigilance was maintained
throughout the experiment, and that each type of sensory
stimulus was equally relevant to the task, participants were
instructed to report the total number of perceived stimuli at
the end of each of the four blocks.

Sensory stimuli.
The hands of the participants were placed at an eye distance
of �45cm, 25� left or right from the midline, 30� below eye
level. Nociceptive somatosensory stimuli were heat laser
pulses [Nd:YAP, 4ms duration (34)] delivered on the innerva-
tion territory of the right superficial radial nerve. Nonno-
ciceptive somatosensory stimuli were constant current
square-wave electrical pulses (1ms duration; DS7A, Digitimer
Ltd, UK) delivered through a pair of skin electrodes (1 cm
interelectrode distance) placed on the wrist, over the median
nerve. Visual stimuli were brief flashes (50ms duration) deliv-
ered through green light-emitting diodes (11.6 cd, 15� viewing
angle) mounted on the top of the speaker. Auditory stimuli
were brief 800-Hz tones (50-ms duration; 5-ms rise and fall
times) presented at a loud but comfortable listening level
(85dB SPL) and delivered through a speaker (VE100AO,
Audax) placed in front of the participant’s hand. Stimulus
saliency was similarly rated across modalities. Further infor-
mation can be found in Mouraux and Iannetti (21) and Liang
et al. (19).

EEG recordings.
The EEG was recorded using 124 electrodes placed on the
scalp according to the International 10-5 system, using the
nose as reference. Ocular movements and eye blinks were
recorded using two surface electrodes, one placed over
the right lower eyelid, the other placed �1 cm lateral to the
lateral corner of the right orbit. The electrocardiogram was
recorded using two surface electrodes placed on the volar
surface of the left and right forearms. Signals were amplified
and digitized using a sampling rate of 1024Hz (SD128,
Micromed, Italy). Electrodes FFT9H, F7, FFT10H, and F8
were removed from the analysis because the recorded signal
was extremely noisy. For the remaining 120 electrodes, signal
preprocessing was conducted using MATLAB (MathWorks).
EEG signals were segmented into separate 4-s-long epochs
(�2 s to þ 2 s relative to stimulus onset). Line noise was
removed using the procedure described in Eschenko et al.
(35). Epochs were band-pass filtered (1 to 100Hz; 3rd order
forward and reverse direction Butterworth filter). All epochs
were visually inspected, and trials associated with large mus-
cular artifacts were removed from the analysis (�1 trial per
subject and condition was removed, i.e., �2% of all trials).
Faulty or noisy electrodes were interpolated by replacing their
signal with the average of the surrounding ones (�1 electrode
per subject). Artifacts due to blinks or eye movements were
corrected using ICA (36). All aforementioned steps were
repeated separately for each stimulus modality. Following
this offline processing, a mean of 44 trials (range 35–61 trials)
was available for each subject and each modality. Note that
this is a simple procedure to clean the data, which could be
easily automated. This is important, as it highlights the ease
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of generating data that can be fed into LSA. Finally, we
assessed the difference from zero at the minimum of each
negative local potential identified by the filters using one-
tailed t tests.

RESULTS

Simulations

We tested whether the novel adaptive filter, local spatial
analysis (LSA), could successfully retrieve local components
masked by strong widespread activity in simulated data. To
this aim, we simulated 40 trials of one time point of an ERP
response in which a weak and local negative component cen-
tered at C3 overlapped with a strong and widespread nega-
tive component centered at Cz (Fig. 2; see also METHODS). The
generated EEG had an average amplitude of �20±3mV at Cz
(means ± standard error). The trial-by-trial variability was
comparable if not higher than in recorded ERP data (see next
section). Nonetheless, we additionally performed identical
analyses to those described in the remainder of this section,
but with substantially higher levels of noise. The results,
shown in Supplemental Fig. S1 (all Supplemental Material
available at https://doi.org/10.6084/m9.figshare.12104043),
were qualitatively similar to those described here, as long
as the noise was not extreme (i.e., standard deviations of
global noise >5 times larger than the local component
mean amplitude and variance). Note that the weak local
component was barely noticeable in the average scalp EEG
topography (Fig. 2).

The widespread component produced a positive trial-by-
trial correlation between C3 and Cz (not shown). We esti-
mated the linear regression coefficient of C3 on Cz. This coef-
ficient quantifies the degree by which one must subtract the
EEG signal at Cz from that at C3 to remove the common
widespread effect. By repeating this weighted subtraction
against Cz for all electrodes, LSA returned a scalp topogra-
phy virtually identical to that of the simulated local compo-
nent (Fig. 2).

We also applied four of the most commonly used station-
ary spatial filters to the same data (Fig. 2; see also METHODS).
First, we attempted to remove the widespread component by
mere subtraction of the potential at Cz using the vertex refer-
ence (VR). VR failed to highlight any local activity: at periph-
eral electrodes VR leaked signal from the vertex and
returned spurious positive EEG signal. A similar result was
obtained with the average reference (AR), although in this
case the peripheral leakage was less pronounced. The surface
Laplacian (SL) returned scalp maps that were spatially noisy,
and in which it was hard to identify the lateralized compo-
nent. The contralateral difference (CD) returned a localized
negative component. The shape of the lateralized negativity
returned by CD, however, was not identical to that of the
generated local activity. Furthermore, CD also created a spu-
rious symmetrical positive component. We also observed
two additional problems with this approach. First, CD
returned no signal when we moved the local component
from C3 to a site on the medio-lateral axis (e.g., at Fz,
Supplemental Fig. S2). Second, unlike LSA, CD returned a
local negativity at C3 when we simulated that the EEG cap
was slightly misplaced (3-mm shift to the right) along the

medio-lateral axis, even though in this case no local activity
was present in the simulated data (Supplemental Fig. S2).

We also applied ICA and PCA to the same data (see
METHODS). For ICA, the small number of samples available
(40 trials, 1 time point) heavily constrained the number of in-
dependent components that could be extracted from the
data. Thus, we extracted four independent components (ICs)
without incurring in numerical errors. The widespread activ-
ity dominated all extracted ICs (Supplemental Fig. S3).
Although there was a hint of lateralization in IC3, none of
the ICs clearly highlighted the small local activity. For PCA,
we used the same number of components as for ICA. PCA
split the simulated activity into widespread, local, and chan-
nel noise remarkably well, when there was only a single local
component (Fig. S4, Supplemental Fig. S5).

Next, we repeated all the above analyses, but adding two
additional local sources. The results from the stationary fil-
ters were qualitatively similar; VR and AR failed to highlight
local activity, SL returned spatially noisy maps in which
individual components could not be distinguished, and CD
created components with spurious symmetrical images.
Overall, PCA and ICA performed better than the static filters,
but were inconsistent upon repeated simulation, and
highly susceptible to noise. LSA, on the other hand, consis-
tently returned each of the three local components (Fig. 4,
Supplemental Fig. S5).

Location-Dependent Activity in the Somatosensory,
Auditory, and Visual ERPs

To investigate whether the LSA filter can highlight local
activity in real EEG data, we applied it to ERPs elicited by
stimuli belonging to different sensory modalities, delivered
to or near the participants’ right hands.

Somatosensory ERPs.
We began our analysis by investigating the somatosensory
N1 (sN1), an ERP component contralateral to the stimulated
hand. This component is observed both in response to noci-
ceptive and nonnociceptive somatosensory stimulation. The
sN1 is an ideal test-bench for our filter because it overlaps
with the larger centrally distributed somatosensory N2 (sN2)
(37–39). However, the sN1 is distinct from the sN2. First, the
sN1 is maximal over the central electrodes contralateral to
the stimulated hand, whereas the sN2 is symmetrical and
maximal at the scalp vertex (37). Second, the sN1 peaks
�30ms earlier than the sN2 (39). Finally, the sN1 provides in-
formation about the activity of the ascending somatosensory
pathways complementary to that of the sN2 (21, 34, 40–43).

Importantly, the sN1 was already visible in the spatially
unfiltered EEG as a negativity in the hemisphere contralateral
to the hand of stimulation, at �100ms and 160ms poststimu-
lus following nonnociceptive and nociceptive stimulation,
respectively. However, the sN1 spatially overlapped the cen-
trally distributed sN2 for both stimulus types (Fig. 5, left two
columns). We applied LSA to adaptively remove the sN2 com-
ponent, captured maximally at Cz, from all other electrodes.
The workflow detailing how LSA was used on the somatosen-
sory ERP is shown in Fig. 3. For nonnociceptive somatosen-
sory stimulation, LSA revealed a negative component with a
minimum of -2.5 ±0.9mV at electrode AF7 (means ± standard
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error; one-tailed t test, P = 0.004). For nociceptive somatosen-
sory stimulation, LSA revealed a negative component with a
minimum of�2.2±0.5mV at electrode FCC3H (means± stand-
ard error; one-tailed t test, P = 0.001). Latency, amplitude, and
topography of the extracted components were consistent with
previous reports (37, 39, 44).

We also applied the four previously discussed stationary
filters to the same somatosensory ERPs (Fig. 5, left two col-
umns). Both AR and VR failed to highlight any lateralization
beyond that already observable in the unprocessed EEG. SL
did not highlight any lateralization for nonnociceptive soma-
tosensory stimuli, whereas for laser stimuli it returned a neg-
ative minimum at electrode FFC5H (�1.8 ±0.8mV/cm2,

means ± standard error; one-tailed t test, P = 0.02). However,
the SL output topography was noisy and did not reveal any
clear component; it also included residual activity from cen-
tral and ipsilateral regions. CD isolated a localized negativity
compatible with the sN1 uniquely for nociceptive stimuli: it
returned a negativity of �3.9± 1.6mV (means ± standard
error; one-tailed t test, P = 0.02) at FFC5H, but also a sym-
metrical and spurious positive activity on the hemisphere ip-
silateral to the stimulated hand.

Auditory ERPs.
We then investigated the auditory ERPs elicited by short
transient tones (see METHODS). Like the somatosensory ERP,
the auditory ERP is also dominated by a widespread sym-
metrical vertex negativity, peaking at �100ms (often
referred to as N1, but here for symmetry in nomenclature
with the somatosensory modality referred to as aN2). This
vertex aN2 overlaps with an earlier negative component
(which we refer to as aN1). As expected from previous reports
(45–50), we observed the aN1 lateralization in the spatially
unfiltered EEG as a negativity in the left hemisphere (i.e.,
contralateral to the stimulated right side), with a peak la-
tency of�80ms poststimulus (Fig. 5, third column).

Compared with the somatosensory response, highlighting
the lateralized auditory aN1 was a more challenging test as
in our data the aN2 vertex component was broader than the
sN2. LSA revealed a negative component with a minimum
of �1.3 ± 0.5 mV at FC3 (means ± standard error; one-tailed t
test, P = 0.016). Latency, amplitude, and topography of the
extracted component were consistent with previous
reports (45, 51). In contrast, none of the applied stationary
filters could highlight this lateralized activity (Fig. 5, third
column).

Visual ERPs.
When applied to the somatosensory and auditory ERPs, LSA
returned a negative component contralateral to the stimu-
lated side and peaking �30ms before the overlapping wide-
spread vertex negativity (Fig. 5, first three columns). Given
the similarity of these two results, we investigated whether
this lateralized component was also present in the ERPs eli-
cited by brief flashes presented in the right visual hemifield
(see METHODS).

The visually evoked negative vertex wave peaked 137ms
poststimulus (Fig. 5, left column, top plot). For this reason, we
applied LSA to the ERP response at 107ms, i.e., 30ms before
the negative vertex peak. At this latency LSA revealed a later-
alized negative component with a minimum of �1.6±0.4mV
at electrode FT7 (one-tailed t test, P = 0.0004; Fig. 5, right-
most column). Latency, amplitude and topography of this iso-
lated component were similar to those observed in the early
local components of somatosensory and auditory ERPs.
Similarly to what we observed in the auditory ERP, none of
the stationary methods revealed this lateralized component
in the visual ERPs (Fig. 5, right-most column).

Somatosensory, auditory, and visual ERPs following
left-side stimulation.
One of the analyzed datasets (19) also contained nonnocicep-
tive somatosensory, auditory, and visual stimulation deliv-
ered to and near the left hand. The results from the identical
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Figure 4. Performance of local spatial analysis (LSA) on simulated event-
related potential (ERP) data containing a central widespread component
and multiple lateralized local components. Layout is as in Fig. 2 but two
local components have been added. LSA successfully returns a scalp to-
pography virtually identical to that of the multiple original local compo-
nents. Commonly used stationary filters fail to highlight the local
components. The contralateral difference merges two of the local sources,
because it returns spurious components on opposite hemispheres. Color
axes represent voltage (mV).
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analysis described earlier (Location-Dependent Activity in
the Somatosensory, Auditory, and Visual ERPs section), but
applied to the left side stimulation are shown in Supple-
mental Fig. S6. We again found local components contralat-
eral to the stimulated side for both somatosensory and visual
stimulation (�2.5 ±0.7 6mV at FT8, P = 0.002 for electric;
�1.1 ±0.5mV at FT8, P = 0.02 for visual). For auditory stimula-
tion, a localized, negative, contralateral component was

visible in the grand average of the LSA, but this result was
not statistically robust (�0.9±0.9mV at F6, P = 0.18). In fact,
auditory left-side stimulation was one of the few situations
where the SL outperformed LSA, showing a localized nega-
tive component on the frontal right hemisphere (�1.6 ±
0.7mV at F4, P = 0.02), and a relatively noise-free scalp topog-
raphy. Notably, a local negativity ipsilateral to stimulation
side was present for auditory stimuli (�1.0±0.5mV at FC3,

Figure 5. Performance of local spatial anal-
ysis (LSA) on recorded EEG data. Event-
related potentials (ERPs) were elicited by
fast-rising nonnociceptive (electric) soma-
tosensory, nociceptive (laser) somatosen-
sory, auditory, and visual stimuli delivered
at long and variable interstimulus interval
of 5–10 s (columns from left to right). The
first two rows illustrate the ERP waveform
at Cz and the scalp topography at the la-
tency of the grey vertical line, i.e., 30ms
before the peak of the N2 negative wave
(see METHODS). The third row shows the
output of LSA at the same latency. The
remaining rows show the output, again at
the same latency, of commonly used sta-
tionary filters: vertex reference, average
reference, surface Laplacian, and contralat-
eral difference. Note how the local compo-
nent is best highlighted by LSA. Color axes
represent voltage (mV).
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P = 0.04), and a more widespread ipsilateral negativity was
present for visual stimuli (�2.0±0.7mV at FT7, P = 0.009).

DISCUSSION
Here, we describe a new filter for extracting local ERP

components masked by large widespread activity (local spa-
tial analysis, LSA). We hope that LSA can serve as an exam-
ple of a new way of performing EEG analyses: instead of
blindly apply a certain spatial filter to the entire ERP time
course, filters can be developed ad hoc, to tackle the particu-
lar question that researchers face. Specifically, LSA exploits
the information stored in the trial-by-trial variability of the
ERP response to extract the local activity that, for each elec-
trode and time point, is statistically independent to the
widespread activity. Thus, LSA is adaptive both in space and
time. Using simulated data, we show that 1) LSA can extract
local ERP components using few tens of trials, even when
the signal-to-noise ratio is low. Using real data, we show that
2) LSA highlights well-known local and small ERP compo-
nents—the somatosensory (sN1) or the auditory (aN1)—that
overlap with strong and widespread scalp negativities.
Furthermore, we identified a frontal local component of the
visual ERP (vN1) that is reminiscent of the somatosensory
and auditory N1s. To the best of our knowledge, this vN1 has
not been described before. Importantly, 3) LSA outper-
formed all commonly used stationary filters in both recorded
and simulated data.

Finally, LSA is considerably easier to use than other popu-
lar adaptive filters such as ICA and PCA. We discuss the
implications of these findings in the remainder of the
DISCUSSION.

LSA Allows Extracting Local Components in Simulated
Data

We applied LSA to simulated EEG data. LSA reliably high-
lighted the local activity when 40 trials were generated for
one single time point (Fig. 2). This result is important for two
reasons. First, it shows that LSA can work effectively with
the number of trials collected in typical ERP experiments, i.
e., between tens and hundreds. Second, it shows that LSA
can successfully highlight local activity at single time points
(see also the discussion about time-stationarity of conven-
tional adaptive filters in the section LSA Is Simpler than
Conventional Adaptive Spatial EEG Filters). This last result
is not trivial. Indeed ICA, another adaptive filtering tech-
nique, failed to highlight the simulated local components on
the same simulated data (Supplemental Fig. S3 and S5),
although PCA performed somewhat better (Supplemental
Fig. S4 and S5).

LSA Allows Extracting Local Components from the
Somatosensory, Auditory, and Visual ERPs

We also applied LSA to real ERPs elicited by stimuli
belonging to different sensory modalities: auditory, visual,
and somatosensory (both nociceptive and nonnociceptive).
These scalp ERPs are functionally heterogeneous and reflect
the activity of distinct cortical generators overlapping in
time and space (1). When elicited by isolated and intense
fast-rising stimuli (as in the case of the datasets analyzed in
this study), large and widespread scalp potentials dominate

over small and local potentials (19, 52). Therefore, these
ERPs provide an appropriate test-bench for an algorithm
that aims to isolate small-amplitude local components em-
bedded within large-amplitude widespread activity.

By removing widespread scalp activities, LSA effectively
isolated local centrofrontal negativities contralateral to the
stimulated side, in all sensory modalities. These local nega-
tivities have been previously described in the somatosensory
and auditory domains. Specifically, in somatosensory ERPs
elicited by isolated and intense transient stimuli (37, 39),
there is converging evidence in both human and rodents
that this early negative component is generated in the pri-
mary sensorimotor cortex contralateral to the stimulated
hand or forepaw (53). In auditory ERPs, such a lateralized
negativity is maximal over frontal-central electrodes contra-
lateral to the stimulated auditory hemifield (45–50), and its
generators have been suggested to be located in the superior
temporal gyrus (Brodmann’s Area 22) (54). To the best of our
knowledge, a negative component of this kind has not been
previously described in visual ERPs. A lateralized subcompo-
nent of the visual N2 has been shown to be contralateral to
the visual hemifield of stimulation (55); however, this com-
ponent has a more occipital distribution than the lateralized
component extracted with our method.

These early local components extracted by LSA in all
sensory modalities share several features: they are all neg-
ative, contralateral to the stimulated side, centrofrontally
distributed, and of similar amplitude. Finally, in all
modalities, they are maximal approximately 30 ms before
the peak latency of the subsequent negative vertex wave
(Fig. 5).

Even though a detailed discussion of the origin of this
component is beyond the scope of this article, on the basis of
these similarities it is tempting to speculate that there is a
common neural mechanism responsible for producing at
least part of this negativity in all modalities. Using the com-
ponent disclosed by LSA as input data for subsequent source
analysis could possibly help clarify this issue. Sensorimotor
areas could play a role in the generation of this lateralized
component. Indeed, we have recently shown that saliency-
evoked EEG responses are tightly coupled with a modulation
of themotor output (56). Importantly, the correlation strength
is maximal for the centrofrontal EEG activity contralateral to
the stimulus. Such a sensorimotor explanation might also fit
with the fact that when stimuli were presented near the left
hand, both ipsilateral and contralateral local activity were
present. This observation is consistent with the well-known
asymmetry of cortical motor function: processes related to
the nondominant hand are often more bilaterally distributed
than processes related to the dominant hand (57–59). It is also
possible that this local contralateral component arises due to
some features of the tested task, given that participants were
counting the stimuli (60). Clearly, the relationship between
the negativities highlighted by LSA and motor activity
deserves further investigation.

LSA Outperforms Commonly-Used Stationary Spatial
Filters

We compared the performance of LSA in isolating local
EEG activity to that of four commonly used stationary filters.
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LSA outperformed all stationary techniques considered: sta-
tionary methods could not retrieve the local components in
simulated data (Fig. 2) nor highlight the well-known lateral-
ized sN1 and aN1 in recorded EEG data (Fig. 5). These results
provide evidence that stationary techniques can be unsuited
for extracting meaningful spatial features in ERP responses,
because ERP responses are intrinsically nonstationary. We
now critically review each stationary filter and compare it to
LSA.

We compared the result of our filter to that obtained using
the vertex reference (VR) for two reasons. First, VR is widely
used in asymmetry research for highlighting EEG lateraliza-
tions (2–8). Second, given that in both simulated and
recorded data we used LSA to remove Cz activity from that
of all other electrodes, VR and LSA performed identical oper-
ations, except for one aspect. VR used a single fixed weight
for all electrodes, whereas LSA adaptively estimated the
weight for each electrode and subject from the data. Our
results clearly show that this difference is crucial: unlike
LSA, VR failed to highlight any lateralized component (Fig.
5). Our findings support previous conclusions discouraging
the use of the vertex reference in EEG analysis (6, 14, 61).

The average reference (AR) is probably the most com-
monly used stationary spatial EEG filter (1). Its success stems
from the fact that the scalp topographies obtained with this
technique appear to be more spatially localized when wide-
spread activity is present. However, this filter does not alter
the spatial structure of the data. It simply shifts the EEG sig-
nal at all sites by an identical amount. As detailed elsewhere
(1), when only the scalp region of the head is sampled (as in
most EEG experiments), the average across electrodes is
dominated by the electrode where the widespread activity is
maximal. In this case the change in color scale of the scalp
maps, from a widespread positive or negative voltage to a
mixture of positive and negative voltage within a given
timeframe, is intuitively but erroneously interpreted as
highlighting local components. In reality, there is no
change whatsoever in the spatial relationships between the
EEG at different sites. This was also the case in our data
(Fig. 5). For this reason, as already suggested by others, we
propose that AR should only be used blindly when the
entire head of the subject (i.e., including face, chin, jaws.
and neck) is covered with a high number of electrodes, as
only in this case the average of all electrodes can be consid-
ered approximately neutral (10).

The surface Laplacian (SL) collectively denotes a group of
mathematical operations that attempt to transform the
recorded EEG into values of the radial current flow at the
scalp, by estimating the second order spatial derivative of
the EEG signal (10, 11). Several implementations of this tech-
nique exist. The core principle, however, is the same for all
implementations and consists in computing local weighted
differences for estimating the spatial derivatives (11). Both in
simulated and recorded data, SL returned maps that were
spatially noisy and hard to interpret in terms of underlying
local components (Figs. 2 and 5). This is no surprise given
that from the signal processing point-of-view the SL is a
high-pass spatial filter (10); it dampens widespread effects
and highlights local spatial variability. Although this might
seem similar to achieving the objective of highlighting local
activity, the issue is that SL highlights “any” type of spatial

variability, independently of whether this is introduced by
brain activity or by differences in electrode conductance or
electrical noise.

The contralateral difference (CD) is the standard proce-
dure for extracting the so-called Lateralized Readiness
Potential (LRP) (1, 30) and for highlighting differences in
EEG activity between the two hemispheres (54, 62). In our
data, CD did not highlight the local lateralized activity that
was instead revealed by LSA in auditory and visual ERPs
(Fig. 5). Furthermore, our simulations revealed that the use
of CD poses three main issues. First, CD cannot highlight
local components close to the midline. Second, more worry-
ingly, CD is susceptible to artifacts due to even small shifts
in cap placement along the mediolateral axis. These artifacts
can become an issue when trying to identify local sources
close to the midline such as the N1 wave in somatosensory
ERPs elicited by foot stimulation (39, 44, 63). In this case,
if the cap is slightly displaced in the mediolateral direc-
tion, CD can return a spurious local source close to the
midline, which can be misinterpreted as a sensorimotor
source (Supplemental Fig. S2). Finally, unless the EEG
data are entirely symmetrical, CD always produces a spu-
rious, symmetrical activity of opposite polarity along the
mediolateral axis.

LSA Is Simpler than Conventional Adaptive Spatial EEG
Filters

We did not perform an exhaustive comparison between
the results of LSA and those of other adaptive filters using
the recorded data (although we did such a direct comparison
using simulated data, see the Simulations section under
RESULTS and Fig. 2). In principle, there is no reason to assume
that similar results could not be obtained using other con-
ventional adaptive filters. However, even assuming that
these filters would yield the same results, their use is more
burdensome than LSA, to the point of being impractical. To
illustrate this, let’s consider the differences between LSA and
ICA. We chose ICA among the popular adaptive filters for
two reasons. First, ICA is the most commonly used adaptive
spatial filter; it has now become standard for removing phys-
iological artifacts such as blinking and heartbeat (1, 29, 64)
and it can be used to separate ERP components (19–21).
Second, similarly to LSA, ICA separates components on the
basis of the assumption that the voltages produced by differ-
ent sources should be, to some extent, statistically independ-
ent. Although we do not discuss PCA and beamforming in
similar detail for the sake of brevity, we note that several of
the issues highlighted here for ICA also apply to these
methods.

We start by noting that understanding the way LSA works
is much easier than understanding how ICAworks. While LSA
uses a simple linear regression, ICA uses a combination of
techniques that require advanced statistical knowledge such
as whitening, randomweights initialization, andmaximization
of measures of statistical dependency (e.g., kurtosis, negen-
tropy, Kullback–Leibler divergence) (31). Many researchers,
therefore, are likely to apply ICA without a full understanding
of its underlying principles. This difference is important: when
users understand the analytics behind a certain method, they
are less likely tomisuse it ormisinterpret its results.
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To demonstrate the extent to which using ICA can be
more burdensome than LSA, we compare the procedure for
isolating the somatosensory N1 with LSA— described in this
work—with that for performing the same task using ICA—
outlined in a previous study from our group (37). To high-
light the lateralized N1 components with LSA only two steps
were needed: 1) selecting the midline electrode where the
widespread N2 is strongest in the grand average EEG and 2)
running the algorithm to automatically remove the activity
of the chosen electrode for each subject through trial-wise
linear regression (Fig. 3). In contrast, the ICA workflow
required considerably more complicated steps: step 1) run-
ning ICA to extract the independent components (ICs); step
2) categorizing the ICs into stimulus-related and nonstimu-
lus-related components using a Z-score comparison against
the prestimulus interval; step 3) selecting the stimulus-
related ICs with a peak latency of the N2 between 175 ms and
275ms; step 4) visually inspecting these ICs to identify those
with a scalp topography centrally distributed and maximal
at the vertex, and finally, step 5) removing the ICs identified
at step 4. Note that these steps must be performed separately
for each subject and that some of them require time-con-
suming visual inspections of single-subject ICs. The
sequence of steps highlights two shortcomings of ICA. First,
the advantage of using a “blind” (i.e., assumption-less) tech-
nique such as ICA is usually lost during IC categorization,
which requires subjective prior knowledge and assumptions.
Supplemental Fig. S7 illustrates that if such knowledge is not
used, neither ICA nor PCA, which also relies on prior knowl-
edge when used across subjects, can successfully identify
local components in the real data. Second, the IC categoriza-
tion is complex and time-consuming. It is not surprising that
researchers often refrain from using ICA and opt instead for
the less-effective, but more immediate, stationarymethods.

There is one additional issue that makes the use of ICA
more impractical than LSA for obtaining the results
described here. LSA adapts the filter weights at each time-
point using only the information stored in the trial-by-trial
variability at that specific time point. LSA is thus adaptive
both in time and space. ICA, instead, pools together EEG val-
ues from the whole ERP time course and from all trials, to
create a large statistical dataset for estimating the large num-
ber of ICs. Crucially, by mixing EEG data collected at differ-
ent time points, ICA is not sensitive to small transient EEG
changes, which are an object of interest of ERP analysis. In
other words, ICA is adaptive in space but not in time.
Possibly for this reason, in two previous studies (19, 21) from
our group using the same data, ICA failed to highlight the
lateralized auditory activity. To reproduce with ICA the
results yielded by LSA (Fig. 5), we would need to apply ICA
only to the time points of the response at which we expect to
observe the lateralized components. However, properly cate-
gorizing the ICs extracted using such a small amount of data
would be extremely hard if not impossible, given that these
ICs would include a large amount of noise and minimal time
information. Given that PCA and beamforming are also not
adaptive in time, none of the most commonly used adaptive
filters can be used in the simple way that LSA allows. The
ability of LSA to adapt to even small and short-lasting EEG
changes is one of its most important advantages. The impli-
cations of this advantage are discussed in the next section.

A New Approach to Spatial EEG Filtering

An open issue in EEG analysis is how to establish best prac-
tices to spatially filter the data (65). As few of the available sta-
tionary or adaptive spatial filters have been developed with a
specific question in mind, the standard approach has been to
compare the effect of each filter on a number of test-bench
datasets, to identify the filters providing the best results (12,
65). The issue with this approach is that it tries to match
generic tools to specific problems.

In this work, we propose an alternative approach that con-
sists of exploiting the cues visible in the unfiltered EEG, and
use them to build filtering tools that work ad hoc for specific
situations. This approach, therefore, shapes the tool around
the problem, preventing the situation where filters are used
on data in which the meaning of their output can be misin-
terpreted. For example, LSA allows exploiting the presence
of a large widespread component in the unfiltered EEG and,
thus, to develop a filtering strategy for testing the possible
presence of masked underlying local activity. Although LSA
is by no means a perfect tool—for example it is linear,
whereas the mapping between sources and scalp potentials
might not be—we hope that the kind of approach it exempli-
fies will become more popular. Importantly, this approach
needs to be applicable only in the specific time points where
the assumptions hold, and therefore needs to be adaptive in
time. For example, one should not use LSA just anywhere on
the ERP time course, but only in those windows containing a
strong widespread activity in the unfiltered signal. Besides
the large vertex waves dominating the responses reported in
this work (21), other examples are the large ERPs recorded
during motor (the lateralized readiness potential) (66), exec-
utive control (the error related negativity) (67) or language
tasks (the N400) (68).

In this work, we have demonstrated that building spatial
EEG filters that are adaptive in time as well as in space is pos-
sible not only in theory but also in practice, even using a
dataset with the small number of trials collected in typical
EEG experiments. Although we are aware that the approach
described here cannot be extended to the entirety of prob-
lems in EEG, we believe that this new strategy can be used
for creating a new class of time-adaptive spatial EEG filters
to address different issues in ERP analyses.
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