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a b s t r a c t 

Synchronization of neural activity across brains – Interpersonal Neural Synchrony (INS) – is emerging as a power- 
ful marker of social interaction that predicts success of multi-person coordination, communication, and coopera- 
tion. As the origins of INS are poorly understood, we tested whether and how INS might emerge from spontaneous 
dyadic behavior. We recorded neural activity (EEG) and human behavior (full-body kinematics, eye movements, 
and facial expressions) while dyads of participants were instructed to look at each other without speaking or 
making co-verbal gestures. We made four fundamental observations. First, despite the absence of a structured 
social task, INS emerged spontaneously only when participants were able to see each other. Second, we show that 
such spontaneous INS, comprising specific spectral and topographic profiles, did not merely reflect intra-personal 
modulations of neural activity, but it rather reflected real-time and dyad-specific coupling of neural activities. 
Third, using state-of-art video-image processing and deep learning, we extracted the temporal unfolding of three 
notable social behavioral cues – body movement, eye contact, and smiling – and demonstrated that these behav- 
iors also spontaneously synchronized within dyads. Fourth, we probed the correlates of INS in such synchronized 
social behaviors. Using cross-correlation and Granger causality analyses, we show that synchronized social be- 
haviors anticipate and in fact Granger cause INS. These results provide proof-of-concept evidence for studying 
interpersonal neural and behavioral synchrony under natural and unconstrained conditions. Most importantly, 
the results suggest that INS could be conceptualized as an emergent property of two coupled neural systems: an 
entrainment phenomenon, promoted by real-time dyadic behavior. 
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. Introduction 

Social interaction with conspecifics is one of the most complex and
ritical parts of our life ( Chen and Hong, 2018 ). To successfully navigate
ur social environment, an information exchange between our brain and
he brains of others must occur, leading to a continuous and reciprocal
pdate of information on partners’ inner states and actions ( Frith and
rith, 2007 ; Gallotti et al., 2017 ; Hasson et al., 2012 ). This continuous
xchange and update drives our social interactions and may ultimately
mpact our capacity to anticipate and adapt to others’ behavior. How do
ndividuals accomplish such information transfer during a social inter-
ction? 

Interpersonal Neural Synchrony (INS) – the temporal alignment
f neural activities between interacting partners – has been pro-
osed as a mechanism mediating interpersonal exchange of infor-
ation ( Dumas et al., 2010 ; Hasson et al., 2012 ). This proposal is

ased on the notion that neural oscillations reflect transient states of
ortical excitability, so it is assumed that their interpersonal align-
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ent might facilitate individual agents to coordinate their behavior, or
ven to share their inner cognitive or affective states ( Kingsbury and
ong, 2020 ). This view is supported by studies indicating that INS
redicts the success of social interaction, which is typically measured
sing structured tasks implying coordination, cooperation, or verbal
ommunication ( Cui et al., 2012 ; Dikker et al., 2017 ; Hoffmann et al.,
019 ; Kingsbury et al., 2019 ; Meshulam et al., 2021 ; Pan et al., 2018 ;
arkinson et al., 2018 ; Reinero et al., 2021 ; Stephens et al., 2010 ;
ie et al., 2020 ; Yang et al., 2020 ; Zhang and Yartsev, 2019 ). 

Research on human INS has so far focused on correlating the strength
f INS with success in a given ‘structured’ social task, i.e., the achieve-
ent of a collective goal according to task instructions ( Babiloni and
stolfi, 2014 ; Nam et al., 2020 ; Wang et al., 2018 ). This approach

s sufficient to establish a relationship between INS and social behav-
or and, in some cases, might even suggest that INS has direct conse-
uences on social behavior ( Kingsbury et al., 2019 ; Novembre et al.,
017 ; Yang et al., 2021 ). Yet, this approach alone has not clarified how
NS originates in the first place. Albeit crucial, this question has received
ne 2023 
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Fig. 1. Experimental setup and design. a: Experimental setup. Twenty-three dyads of healthy participants were seated facing each other while their neural activity 
(EEG), eye gaze, body, and facial movements were recorded (over 2 min-long trials). Participants were not permitted to speak or to make co-verbal gestures. b: 
Experimental design. Using a 2 × 2 factorial design, we manipulated interpersonal visual contact (Vision, No Vision) and interpersonal spatial proximity (3 m, 1 m). 
We also included a baseline condition, during which participants were seated in two separate rooms and could not exchange or share information in any way (we 
assumed that no INS could emerge in such a “ground truth ” condition). 
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ittle attention by this research community, often assuming that INS is
ither triggered by the task itself (e.g., Djalovski et al., 2021 ; Levy et al.,
017 ; Li et al., 2021 ), or by subtle behavioral cues that are normally not
onitored ( Jiang et al., 2012 ; Kinreich et al., 2017 ; Leong et al., 2017 ;

chippers et al., 2010 ). Notably, when these cues are measured, they are
ften confounded with task execution, as it happens when e.g., body lan-
uage is used to reinforce verbal communication ( Hömke et al., 2018 ,
017 ; Tartter, 1980 ; Tartter and Braun, 1994 ; Wohltjen and Wheat-
ey, 2021 ). 

To shed light upon the origins of INS, we designed a hyperscanning
tudy that did not enforce a structured social interaction. This allowed
s to measure spontaneous brain activity and behavior without the con-
traints and confounds posed by a specific task ( Hamilton, 2021 ). We re-
ruited 23 dyads of participants and asked them to simply look at each
ther while acting spontaneously ( Fig. 1 a). The participants were not
ermitted to speak or to make co-verbal gestures. We measured INS by
imultaneously recording electroencephalography (EEG) in both partici-
ants. Crucially, combining eye tracking and automated (deep learning-
ased) video-based analysis, we also recorded a number of behavioral
easures that allowed us to estimate the temporal unfolding of three

undamental behavioral cues: eye contact, body movement, and smil-
ng ( Depaulo, 1992 ; Kleinke, 1986 ; Martin et al., 2017 ). We integrated
hese neural and behavioral measures and investigated their real-time
utual dependency using computational methods such as hierarchical
ayesian modeling and Granger causality. 

We tested two hypotheses: first, whether INS might emerge sponta-
eously in the absence of a structured task. To do so, we manipulated
wo factors that implicitly regulate social behavior: interpersonal visual
ontact and interpersonal spatial proximity ( Fig. 1 b). Second, assum-
ng that such minimal social conditions are sufficient to modulate INS,
e hypothesized that specific behavioral cues would predict INS. While

esting this second hypothesis, we compared two models: one where the
ndividual behavior of one participant, working as a signal, is sufficient
o observe INS; and a second model where such behavior needs to be
eciprocated. 

. Materials and methods 

.1. Participants 

Forty-six individuals (26 females; mean age 21.43 years, range 18–
0 years) formed 23 dyads (13 same-sex dyads). All participants form-
2 
ng a dyad were familiar with each other (partner years of familiarity
ith each other were 6.59 ± 5.08 SD years; partner subjective closeness
as rated 7.87 ± 2.27 SD on a scale of 1–10 where 1 is low closeness
nd 10 is highest subjective closeness). Participants had normal or cor-
ected to normal vision and no history of psychological or neurological
isorders. All participants provided written informed consent and were
ompensated with 25 Euros for their participation. All experimental pro-
edures were approved by the local ethical committee and were carried
ut in accordance with the principles of the revised Helsinki Declaration
World Medical Association General Assembly, 2008). We determined
ur sample size in advance based on previously published studies mea-
uring INS ( Dumas et al., 2010 ; Goldstein et al., 2018 ; Hirsch et al.,
017 ; Noah et al., 2020 ). 

.2. Experimental design and procedure 

The experiment comprised four main experimental conditions orga-
ized according to a 2 × 2 factorial design ( Fig. 1 b). We manipulated
nterpersonal visual contact, i.e., whether the two participants forming
he dyad could see each other or not (Vision, No Vision), and interper-
onal spatial proximity, i.e., whether the participants forming the dyad
ere either 3 m or 1 m away from each other (Far, Near). The design
lso included two control conditions, which we refer to as “positive ” and
negative ”. The positive control condition implied a social task – holding
ands – that has previously been associated with INS ( Goldstein et al.,
018 ; Long et al., 2021 ; Nguyen et al., 2021 ). The negative control con-
ition (baseline) entailed a resting task where participants were placed
n two separate rooms ( Fig. 1 b). During such baseline condition, the par-
icipants did not share the same environment and could not exchange
nformation in any way. Hence, we assumed that no INS could emerge
nder such a “ground truth ” condition. 

The data were collected over repetitions (trials) each lasting 2 min.
e collected 6 trials associated with the negative control condition (one

alf of the trials were collected at the start of the experiment and the
ther half at the end). For all other conditions, we collected 3 trials for
 total of 21 trials. The trials associated with the experimental condi-
ions and the positive control condition were further grouped into three
locks, each including 5 trials whose order was randomized (with one
aveat: the two far and the two near conditions were always conse-
uent to one another in order to minimize movement of the participants
hroughout the experimental procedure). 
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Before the start of the experiment, participants were provided with
nformation about the equipment used to collect the data. Throughout
he experiment, they were asked to simply relax and act spontaneously
hile looking at each other (unless prevented by a screen that was
laced in between the two participants; see also Fig. 1 a). In particular,
articipants were asked to relax, behave naturally and when possible,
ook at the other person (not necessarily making eye contact) [This is
he original text that the experimenter read to the participants before
nitiating the task (in Italian): “Il vostro compito è semplice: restare rilas-

ati sulla sedia, comportarsi in modo naturale e, quando è possibile, guardare

’altra persona (non necessariamente negli occhi). ”]. Participants were not
ermitted to communicate verbally or through co-verbal gestures. We
urther specified that participants were not required to necessarily look
t each other’s faces or eyes, but rather they were generally asked to
ook at the body of their partner. Following the end of the experiment,
articipants were informed about the scope of the experiment. 

The full procedure, including task instructions, preparation of the
quipment (dual EEG, dual eye tracker, dual video recording) and de-
riefing took approximately 2.5 h. 

.3. Behavioral and neural recordings 

During the experimental procedure, we recorded neural activity
using dual EEG), eye movements (using dual eye tracking), and
ideos from both participants. The video recordings were used to
ost-hoc quantify body movement and facial expressions (in particular
miling behavior). A custom library ‘Multi-device-Inter-Synchronizer’
 https://github.com/ateshkoul/Multi- device- Inter- Synchronizer ) writ-
en in Python orchestrated the synchronization of this heterogeneous
quipment (which is further described below). The library provided a
raphical user interface (GUI) for recording participants’ data, coun-
erbalancing of experimental conditions as well as for generating syn-
hronized triggers across the devices. The GUI was written using the
ackage ‘PySimpleGUI’ ( https://pypi.org/project/PySimpleGUI/ ). The
ibrary interfaced with the dual EEG system, the two standalone video
ameras, and the dual eye tracking system. Two types of information
ere transmitted using the library – details on tested participants (via
thernet connection) and trigger codes (via National Instruments card to
he computer controlling the video cameras; and via virtual serial port to
he computer controlling EEG). The communication with the eye track-
ng system was performed using custom libraries that interfaced over
he network library ZeroMQ ( https://zeromq.org/ ) using the efficient
inary serialization format MessagePack ( https://msgpack.org/ ). 

Eye movements : We recorded eye movements from both participants
imultaneously. Each participant’s eye movements were tracked using a
inocular, lightweight eye tracking system (Pupil Labs Core; Pupil Labs,
erlin, Germany ( Kassner et al., 2014 )). The eye tracking system con-
isted of three different cameras. Two infrared spectrum eye cameras
onitored the two eyes simultaneously (120 Hz sampling frequency;
20 × 280 pixels). A third (head-mounted) camera was mounted on
he participant’s head, video-recording from the participant’s viewpoint
100° fisheye field of view, 30 Hz sampling frequency; 1280 × 720 pix-
ls). Data were sampled using the pupil capture software (Pupil Labs,
erlin, Germany; version 1.23). Prior to initiating the recording, we cal-

brated the eye trackers using the Pupil Calibration Marker (Pupil Labs,
erlin, Germany). The calibration required participants to track a fixa-
ion marker while the experimenter was moving the Pupil Calibration
arker towards different (random) locations in space. The mean result-

ng validation accuracy was 2.03° (standard error = 0.054°) while pre-
ision was 0.1° (standard error = 0.0023°). Following the recording, the
aw gaze data were exported using the open source Pupil Player soft-
are. 

Body and facial movements : We recorded body and facial move-
ents from both participants simultaneously using a dual video cam-

ra setup [two standalone cameras (SVPRO USB Webcam 5–50 mm
arifocal Lens) mounted on tripod stands]. The cameras framed the
3 
wo participants from the front side, having a slightly tilted ( ∼30°-
5° with respect to the participants) aerial- and side- view of the par-
icipants ( Fig. 1 a). The distance between the cameras and the par-
icipants changed minimally across Near (160 and 180 cm) and Far
316 and 260 cm) conditions. A custom Python library ‘synchCams’
 https://pypi.org/project/synchCams/ ) was written for interfacing the
ideo cameras with the rest of the recording system. This library allows
 frame-locked dual video recording (i.e., the system acquires frames
rom the two cameras in an alternating fashion). ‘synchCams’ utilizes
he Python-based libraries: ‘opencv’ ( https://opencv.org/ ) for video cap-
ure, ‘pyserial’ ( https://pythonhosted.org/pyserial/ ) for access to the
erial port and ‘socket’ ( https://docs.python.org/3/library/socket.html )
or communication over Ethernet. 

Neural recordings : The electroencephalogram (EEG) was recorded
rom 64 Ag/AgCl active electrodes placed on the scalp according to
he extended international 10–10 system (Biosemi Active-2 system).
EG signal was locally amplified and digitized using a sampling rate
f 2048 Hz. One additional electrode recording electro-oculogram was
laced laterally to the right outer canthus. 

.4. Behavioral data analysis 

The analysis of behavior focused on (i) eye contact, (ii) body move-
ent, and (iii) smiling. These were chosen based on previous evidence
emonstrating that they play an important role in social interaction,
ncluding in the context of hyperscanning studies ( Hirsch et al., 2017 ;
eong et al., 2017 ; Yun et al., 2012 ). Furthermore, a qualitative anal-
sis of all video recordings (not assessing eye contact) indicated that
ody movement and smiling were the most pronounced social behaviors
37.71% and 56.38% of all social behaviors, respectively), compared to
thers such as laughing (1.08%), talking (0.14%) or gesturing (1.61%)
supplementary Fig. S1; see also supplementary Table T1). 

All behavioral analyses – reconstructing eye contact, body move-
ent, and smiling – relied on an automated machine learning-based

stimation of face and body landmarks. Therefore, we first describe such
stimation in detail and then zoom into each of the specific behavioral
easures. We utilized a deep learning-based approach to extract (i) bi-
imensional (2D) face landmark locations from videos captured by the
ead-mounted cameras of the eye tracker and (ii) 2D full body land-
arks from videos captured by the two standalone video cameras. A

rained multi-stage Convolutional Neural Network (CNN) utilized sin-
le frames as input to first jointly predict a set of 2D vector fields that
ncoded the location and orientation of limbs in the image domain -
art Affinity Fields (PAFs) - as well as confidence maps for body part
etection. Next, a greedy inference was used to output the face and
ody part landmarks by parsing the confidence maps and the PAFs. A
ollection of 25 body landmarks (across head, torso, arms, and legs),
s well as 70 facial landmarks, were estimated. A custom library (py-
orch_openpose) written in opencv ( https://opencv.org/ ) and pytorch
 https://pytorch.org/ ) was used to load the trained CNN model via
penpose Python API ( Cao et al., 2017 ) and predict 2D face and body
andmarks for each frame in a video. For a fast prediction of the land-
arks, an NVIDIA GeForce RTX 2060 SUPER graphics processing unit

GPU) was used. 
Eye contact : Eye contact was approximated as the distance between

he gaze focus (of a given participant) and the center of the face (of
he participant’s partner). To do so, we integrated facial landmarks data
gained from the head-mounted video recordings) and eye gaze data
gained from the eye tracker). Specifically, for each frame of the eye
racker head-mounted videos, the estimated facial landmarks were used
o measure the Euclidean distance between the gaze location and the
enter of the face (estimated as the average of the nose landmarks). 

Body movement : Overall (i.e., whole body) movement was estimated
sing 25 body landmarks (gained from the videos recorded by the stan-
alone cameras). We specifically extracted absolute (as opposed to rela-
ive) body locations in order to avoid issues related to head movements

https://github.com/ateshkoul/Multi-device-Inter-Synchronizer
https://pypi.org/project/PySimpleGUI/
https://zeromq.org/
https://msgpack.org/
https://pypi.org/project/synchCams/
https://opencv.org/
https://pythonhosted.org/pyserial/
https://docs.python.org/3/library/socket.html
https://opencv.org/
https://pytorch.org/
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Table 1 

Frequency bands and sub-bands definitions. 

Band Sub-band Frequency 

Delta ( 𝛿) Low 1–2 Hz 
High 2–3 Hz 

Theta ( 𝜃) Low 3–4 Hz 
Mid 5–6 Hz 
High 7–8 Hz 

Alpha ( 𝛼) Low 8–9 Hz 
Mid 10–11 Hz 
High 11–12 Hz 

Beta ( 𝛽) Low 13–18 Hz 
Mid 19–25 Hz 
High 26–31 Hz 

Gamma ( 𝛾) Low 31–47 Hz 
Mid 52–72 Hz 
High 73–95 Hz 
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f the eye tracker wearer. Each body landmark carried 2D coordinates,
.e., movement on the x and y axes (relative to the camera’s field of
iew) over time. These time series underwent a preprocessing proce-
ure aimed at removing outlying values (3 standard deviations away
rom the mean of a given trial, 0.68% of all data) or data points where
he algorithm wasn’t able to predict body position (8.0% of all data).
hese outlying values were then interpolated (1D interpolation), and
hen the resulting time series were smoothed using a moving mean (win-
ow = 1 s). We then computed a composite index of movement change
ver time by first computing the Euclidean distance between (x,y) and
he reference (0,0) coordinate and then calculating the absolute value of
he first derivative of the resulting time series. Prior to summing the data
ssociated with the 25 body landmarks, the time series were smoothed
sing a moving mean (window = 1 s). Finally, the data were visually in-
pected and trials associated with artifacts (i.e., high degree of variance,
efined as above) were removed (2.17%). 

Smiling : Smiling was approximated by computing the aperture of the
outh, which was estimated as the Euclidean distance between the two

xtreme landmarks on the left and right side of the lips (extracted from
he facial landmarks). To increase signal-to-noise ratio, a procedure sim-
lar to that for body landmarks was used: first, outlying values were re-
oved (more than 3 standard deviations), then values interpolated, and
nally, the resulting time series were smoothed using a moving mean
window = 1 s). We evaluated the accuracy of the automated smiling
stimation against a manual frame-by-frame annotation made by a hu-
an observer. We confirmed that the detection of smiles, as generated

y thresholding the aperture of the mouth, corresponded well to the
anual annotation performed by a human observer (accuracy = 0.86,
 < 0.001). 

.5. Neural data analysis 

EEG data preprocessing and analysis were performed using cus-
om scripts running on MatLab (version 2020a MathWorks, Nat-
ck, MA) and exploiting several functions from the Fieldtrip toolbox
 Oostenveld et al., 2011 ). The recorded EEG data were band-pass fil-
ered (cutoff frequencies: 0.3 Hz and 95 Hz, Butterworth, filter-order: 3).
 notch filter (47–52 Hz) was also used to remove electrical noise. We

hen re-referenced the data using a Common Average Reference (CAR).
Noisy or faulty electrodes were interpolated by replacing their volt-

ge with the average voltage of the neighboring electrodes (155/8832
hannels across all dyads; average across the dyads 1.75%, standard de-
iation 1.33%, sem 0.28%). To remove movement artifacts, we used
 validated algorithm for automatic artifact correction: Artifact Sub-
pace Reconstruction (ASR) ( Kothe and Makeig, 2013 ; Plechawska-
ojcik et al., 2019 ). ASR is an adaptive algorithm based on principal

omponent analysis. It estimates clean portions of data to determine
hresholds that are later used to reject large variance components. Based
n the comparative results from ( Chang et al., 2018 ), we used a thresh-
ld value of 10. Next, we submitted the ASR-cleaned data to an ICA
nalysis, and artifacts due to eye blinks or eye movements were sub-
racted using a validated method ( Jung et al., 2000 ). In all datasets,
ndependent components related to eye movements had a large electro-
culogram channel contribution and a frontal distribution. 

The resulting data were then time frequency transformed by us-
ng a sliding window Fourier analysis with a tapering function. To re-
uce spectral leakage and control the frequency smoothing, we used
 Hanning-tapered window with a frequency dependent time window
hat linearly decreased from 500 ms (1 Hz) to 100 ms (95 Hz) (using
he ‘ft_freqanalysis’ function with ‘mtmconvol’ method as implemented
n FieldTrip) ( Novembre et al., 2019 ). We computed power estimates
or all frequencies between 1 and 95 Hz in steps of 1 Hz and a time
esolution of 100 ms (10 Hz). To avoid overrepresentation of certain
ands embracing a disproportionate amount of frequency bins (in par-
icular, gamma band spanning from 31–95 Hz), we defined sub-bands
or further analyses as illustrated in Table 1 . 
4 
.5.1. Intra-brain spectral power 

We computed the intra-brain (average) power within each experi-
ental condition as follows: 

norm aliz ed dat 𝑎 𝑐 = 

dat 𝑎 𝑐 − mean 
(
dat 𝑎 all expe rime ntal cond itio ns 

)
dat 𝑎 𝑐 + mean 

(
dat 𝑎 all expe rime ntal cond itio ns 

)
Where normalized data c and data c are power estimates for each exper-

mental condition at any time point, channel, frequency, and trial, while
ean (data all experimental conditions ) are power estimates averaged over trials
nd timepoints. The normalized data were then averaged over time and
rials to obtain average normalized power estimates for each channel
nd each frequency. 

In accordance with the 2 × 2 factorial design, the main effects of in-
erpersonal visual contact, interpersonal spatial proximity, and the in-
eraction between interpersonal visual contact and interpersonal spatial
roximity, were computed using a cluster-based non-parametric permu-
ation test ( Maris and Oostenveld, 2007 ). This procedure controls for
alse-alarm rate by using a cluster statistic that is evaluated under a
ingle permutation distribution. More specifically, this algorithm com-
ares power estimates between conditions, separately for each channel
nd frequency sub-band, using two-sided paired-samples t-tests, yield-
ng one t-value for each channel and frequency sub-band. The algorithm
hen forms clusters of (at least three) neighboring channels whose t-
alues exceed the significance criterion (here p < 0.05) and computes
 cluster-level statistic value (sum of t-values within the cluster). Next,
luster-level statistics from 1000 random partitions of the data are used
o build a distribution upon which the significance probability (here p
 0.05) of the experimental cluster can be estimated. In order to run this
nalysis in the Fieldtrip toolbox (see above), it was necessary to average
ata across conditions to assess the main effects and interactions using
-tests. Main effects were tested by contrasting the averaged Vision vs.
o Vision conditions (irrespective of interpersonal spatial proximity) or
ar vs. Near conditions (irrespective of interpersonal visual contact).
he interaction was tested by contrasting the difference of Far Vision
nd Near Vision vs. difference of Far No Vision and Near No Vision. Ef-
ect sizes (Cohen’s d) were calculated as standardized mean difference
or each contrast over the channels and sub-bands that comprise a clus-
er ( Meyer et al., 2021 ). 

.5.2. Interpersonal Neural Synchrony (INS) 

Because intra-brain power estimates were statistically different
cross conditions (see below), we employed a separate normalization
f the time frequency transformed data that mitigated these effects and
imed at keeping a comparable range of variability across different con-
itions. This procedure was intended to minimize the possibility of mea-
uring spurious INS. Hence, before computing INS, we used the follow-
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w

ng normalization procedure: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑 𝑎𝑡 𝑎 𝑐 = 

𝑑 𝑎𝑡 𝑎 𝑐 − 𝑚𝑒𝑎𝑛 
(
𝑑 𝑎𝑡 𝑎 𝑐 

)
𝑑 𝑎𝑡 𝑎 𝑐 + 𝑚𝑒𝑎𝑛 

(
𝑑 𝑎𝑡 𝑎 𝑐 

)
Where data c is the (channel- and frequency- specific) power time

ourse data for the entire duration of a single trial (0–120 s) and
ean(data c ) is the average (over time) of this data. 

To control for time-varying effects on normalized time courses, we
etrended these time series and then computed INS using a trial-by-trial
earson’s correlation (i.e., between the normalized power time courses
f the two participants forming a dyad; similarly to Liu et al., 2021 ;
ose et al., 2021 ; Zamm et al., 2018 ; Zhang and Yartsev, 2019 ). We
sed this measure of INS because (i) amplitude changes are easier to be
stimated and often more reliable than changes in other signal proper-
ies such as phase (notably, phase might be estimated even when there is
o signal in the frequency of interest) ( Burgess, 2013 ; Thatcher, 2010 ),
ii) amplitude modulations have more extensively been characterized
compared to phase modulations) across several EEG, MEG and also
FP studies ( Aru et al., 2015 ; Muthukumaraswamy and Singh, 2011 ),
nd notably (iii) amplitude modulations have been suggested to reveal
eural coupling that is typically not detectable, or overestimated by
ther phase-related INS measures such as coherence ( Bruns et al., 2000 ;
ipp et al., 2012 ; Xu et al., 2022 ; Zamm et al., 2018 ). Some studies
ave reported that amplitude modulations capture brain activity simi-
ar to that captured by fMRI and fNIRS measurements ( Mantini et al.,
007 ; Scheeringa et al., 2011 ). The INS measure was both channel- and
requency band-specific, and entailed only homologous channels and
ands. Restricting the analysis to homologous channels was sufficient to
ddress the study’s hypothesis. Besides, this implies noteworthy benefits
n terms of (i) interpretability and (ii) computational costs. First, using
omologous channels yields results that are easier to interpret and re-
ate to traditional electrophysiological studies examining single brains.
econd, focusing on homologous electrodes requires less computational
esources and less statistical comparisons (4096 in the present case).
e then averaged the correlation coefficients across the different trials

elonging to the same experimental condition and Fisher z-transformed
inverse hyperbolic tangent function) them to obtain averaged normal-
zed correlation coefficients for each channel and each frequency band
across conditions within each dyad). Similar to what we did above with
ntra-brain power, we averaged the coefficients according to frequency
ub-bands. Finally, we compared INS (i.e., the normalized coefficients)
cross conditions using the cluster-based non-parametric permutation
est illustrated above ( Maris and Oostenveld, 2007 ). 

A control analysis was run to confirm that significant effects yielded
y the previous analysis were attributable to the real-time interaction
etween the participants forming a given dyad, as opposed to stereo-
ypical modulations of brain activity spuriously causing INS. For this
nalysis, the power time courses associated with one member of a dyad
ere correlated to those associated by all other partners apart from the
ctual partner’s power time courses. ‘Surrogate’ data were thus gener-
ted from ‘pseudo’ dyads, yielding INS values that were subtracted from
he genuine data. The difference (correlation) coefficients were submit-
ed to a new cluster-based non-parametric permutation test illustrated
bove ( Maris and Oostenveld, 2007 ). 

.6. Integration of neural and behavioral data 

.6.1. Instantaneous synchrony 

We estimated time-by-time INS by computing instantaneous correla-
ions between the two partners, focusing on the Vision conditions (i.e.,
hen the two participants could see each other). We focused only on

he power time course associated with the three significant clusters re-
ulting from the previous INS analysis (i.e., one 𝛼 cluster, one 𝛽 cluster,
nd one 𝛾 cluster). Power time courses of each participant were taken;
rst, their means were subtracted and then normalized to unit length.
ach time point of this normalized data was then represented as a vector
5 
n 2D space where the two axes corresponded to normalized data from
wo subjects. Next, the correlation index was computed by taking the
maller angle among the two angles subtended by this vector to a line
rthogonal to the equality line (at 45° angle) ( Zhang and Yartsev, 2019 ).
n such a scenario, an angle of 90° represents a perfect correlation while
n angle of 45° represents no correlation. The instantaneous INS thus
btained was max-normalized and ranged from 0 to 1. 

We also estimated behavioral synchrony between the two partners
again focusing on the Vision conditions). To this aim, the behavioral
ata – eye contact, smiling, and body movement – were processed as the
ower time courses, leading to estimates of instantaneous behavioral
ynchrony. Such behavioral synchrony was then resampled to 10 Hz to
atch the sampling frequency of the instantaneous INS. 

.6.2. Computational modeling 

We used a Bayesian hierarchical linear regression to predict INS
again, focusing on the three significant INS clusters and on the Vision
onditions) from behavioral synchrony (eye contact, body movement,
nd smiling) (see supplementary Fig. S2 for the depiction of the model).

In a first hierarchical model, we predicted INS from discretized be-
avioral data (results presented in Section 3.3 ). Specifically, for dis-
retizing eye contact, we first estimated the area occupied by the part-
er’s face on each image recorded by the eye tracker (relying on land-
arks estimated using OpenPose). Next, this information was combined
ith the gaze information retrieved from the eye tracker resulting in a
inary code (1 if gaze location overlapped with face location, 0 oth-
rwise). For discretizing smiling and body movements, we used a trial-
pecific threshold of mean + 1 standard deviation. This analysis revealed
hat, during the Vision conditions, participants looked at each other’s
aces 21.20% of the time (20.48% of which in synch with their partners),
miled at each other 14.16% of the time (35.48% of which in synch with
heir partners) and performed spontaneous body movement 18.38% of
he time (22.84% of which in synch with their partners). Next, we com-
ared two hierarchical models testing whether an individual behavior
f one participant, working as a signal, is sufficient to observe INS (IND
odel), or, such behavior needs to be reciprocated and therefore occurs

n both individuals simultaneously (REC Model). A second hierarchical
odel instead predicted time-by-time INS from continuous behavioral,

.e., not binary data (results presented in Section 3.4 ). 
Hierarchical models were utilized as these models have parameters

hat meaningfully describe the observed data at their multiple levels as
ell as integrate information within and across levels ( Kruschke and
anpaemel, 2015 ). The Bayesian approach was chosen as it provides a

ull representation of the estimated parameter uncertainty (through the
osterior distribution) which is directly interpretable. Bayesian methods
o not involve the construction of sampling distributions from auxiliary
ull hypotheses as in the frequentist interpretation of parameters. Ad-
itionally, Bayesian methods are inherently designed to provide clear
epresentations of the parameter uncertainty in comparison to frequen-
ist methods ( Kruschke, 2013 , 2010 ; see also Wagenmakers, 2007 for
ore details). 

The hierarchical regression is a partial-pooling or multilevel ap-
roach that estimates the group coefficients while allowing the subject-
evel coefficients to vary ( Gelman et al., 2004 ). The assumption is that
he subject-level coefficients come from a distribution that is centered
round their respective group mean. We modeled the average of group
evel coefficients as random variables with normal distributions ( Eq. (1) )
entered at 0, standard deviations of 100, and the group standard devi-
tions as half-normal distributions ( Eq. (2) ) with standard deviations of
. The overall error was modeled as Half-Cauchy log-likelihood ( Eq. (3) )
ith a scale parameter of 5. 

𝑓 ( 𝑠 |𝜇, 𝜏) = 

√ 

𝜏

2 𝜋
e 𝑥𝑝 

{ 

− 

𝜏

2 
( 𝑠 − 𝜇) 2 

} 

(1) 
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Where 𝜏 = 

1 
σ2 , s is the random variable and s ∈ ℝ , μ is mean, 𝜏 is

recision, and 𝜎 is the standard deviation of the distribution. 

𝑓 ( 𝑠 |𝜏) = 

√ 

2 𝜏
𝜋
e 𝑥𝑝 

( 

− 

𝑠 2 𝜏

2 

) 

(2) 

Where σ2 = 

1 
𝜏
, s is the random variable and s ∈ [0, ∞), 𝜏 is precision,

nd 𝜎 is the standard deviation of the distribution. 

𝑓 ( 𝑠 |𝛽) = 

2 

𝜋𝛽

( 

1 + 

(
𝑠 

𝛽

)2 
) 

(3) 

Where s is the random variable and s ∈ [0, ∞) and 𝛽 is the scale
arameter. 

The subject level coefficients were modeled as normal distributions
ith the mean centered at the group level average, and standard devi-
tion at the group level standard deviation. The linear regression was
stimated in a Bayesian framework. We sampled the posterior distribu-
ion of the parameters using the Markov chain Monte Carlo (MCMC)
ampling algorithm ‘No-U-Turn Sampler’ (NUTS) ( Hoffman and Gel-
an, 2014 ). NUTS is a self-tuning variant of Hamiltonian Monte Carlo

HMC) algorithm that avoids random walk behavior and sensitivity to
orrelated parameters by utilizing gradient information from the likeli-
ood. Such features allow NUTS to converge to high-dimensional target
istributions better than traditional sampling methods like random walk
etropolis or Gibbs sampling ( Hoffman and Gelman, 2014 ). 

We sampled 2500 samples on 4 separate chains that were run using
arallel processing. Model convergence was verified using R-hat statis-
ics ( Vehtari et al., 2021 ). R-hat measure compares the between- and
ithin-chain estimates for model parameters. An R-hat value that devi-
tes from a value of 1 reflects issues with the model convergence. 

The model selection was performed using the Pareto-smoothed im-
ortance sampling leave-one-out (PSIS-LOO) cross-validation method
 Vehtari et al., 2017 ). This method estimates the expected log point-
ise predictive density (elpd) by fitting a Pareto distribution to the
pper tail of the distribution of the importance weights. This proce-
ure is asymptotically equal to Watanabe-Akaike information criterion
WAIC; ( Watanabe, 2010 )) but PSIS-LOO has been suggested to be more
obust in the finite case with weak priors or influential observations
 Vehtari et al., 2017 ). 

We determined the significance of the group level coefficients based
n the overlap of their estimated posterior distributions with the test
alue of ‘0 ′ . A difference of less than 5% in the posterior distribution
verlap (P p|D ) was considered significant. Since the hierarchical re-
ression procedure violates the independence assumption between the
yads, we did not analyze regression parameter estimates in a frequen-
ist test. All Bayesian modeling was performed using ‘pymc3 package’
 Salvatier et al., 2016 ) while model selection was performed using the
ackage ‘arviz’ ( Kumar et al., 2019 ). 

.6.3. Cross-correlation 

We explored whether behavioral synchrony anticipated or followed
NS. To do so, we cross-correlated the instantaneous estimates of neural
nd behavioral synchrony (separately for the three examined behaviors
nd the three identified clusters) at different lags ( ± 10 s) in steps of
.1s. We tested each pointwise cross-correlation coefficient for signif-
cance using a two-sided one sample t -test against a test value of ‘0 ′ .

e corrected the p-values obtained using a false discovery rate (fdr)
orrection ( Benjamini and Hochberg, 1995 ). 

.6.4. Granger causality 

We further performed a Granger Causality analysis to determine the
emporal relationship between the neural and behavioral synchronies
.e., whether behavioral synchronies granger-caused neural synchronies
r vice versa. Given two variables X and Y, X is said to Granger cause
 if the past of X does convey information about the future of Y above
6 
nd beyond all information contained in the past of Y ( Granger, 1969 ).
e operationalized the Granger causality in a multivariate, model-

ased approach by utilizing vector autoregressive (VAR) model theory
 Hamilton, 1994 ; Lütkepohl, 2005 ). We applied the Granger causality
n the continuous power time courses data from the significant clusters
btained in the previous analyses (each containing 1200 data points).
e acknowledge that these time series are longer than those commonly

sed in the field, and we highlight that this was meant to compensate for
he fact that we could rely on only three trials per condition. However,
t should also be noted that previous work has indicated that Granger
ausality indices relying on so few trials might lead to variable esti-
ates and therefore be suboptimal ( Bastos and Schoffelen, 2016 ). For

his reason, we recommend future studies to rely on more trials, if appli-
able. We then z-scored this data and estimated the information criteria
Akaike and Bayesian) for the VAR model (maximum model order for
odel order estimation = 15). We subsequently used Bayesian model or-
er to fit the VAR model. The resulting regression coefficients were then
sed to obtain autocovariance sequences and consequently the pairwise-
onditional time-domain multivariate Granger causalities (MVGCs). We
sed significance testing to compare differences between the two direc-
ions. Since the data were not distributed normally (Anderson-Darling
est p s < 0.05), we used non-parametric Wilcoxon signed-rank tests. The
ranger causality analysis was performed using the MVGC MatLab tool-
ox ( Barnett and Seth, 2014 ). 

. Results 

.1. INS emerges spontaneously through interpersonal visual contact 

We parameterized INS as the Pearson’s correlation between the
lectrode- and sub-band-specific EEG power time courses (i.e., en-
elopes) measured from the two individuals forming a dyad ( Fig. 2 a, see
lso supplementary Fig. S3 and Section 2.5.2 for a full description). We
ompared INS across conditions using a fully data-driven approach (i.e.,
 cluster-based permutation test, see Section 2.5.1 for a full description).
NS clusters represent homologous scalp regions whose activity unfolds
imilarly over time. 

INS emerged spontaneously when the two participants forming a
yad were able to see each other, regardless of their interpersonal spa-
ial proximity (i.e., seated far (3 m) or near (1 m) from each other). This
NS – solely mediated by interpersonal visual contact – manifested itself
n the interpersonal-neural correlation of the envelopes of beta ( 𝛽env 
9–30 Hz) and gamma ( 𝛾env 31–95 Hz ) EEG bands ( Fig. 2 ; 𝛽env INS
luster p = 0.02, Cohen’s d = 0.62; 𝛾env INS cluster p = 0.002, Cohen’s
 = 0.63). The 𝛽env INS cluster had central-posterior topography and
as right-lateralized (similarly to other dual EEG studies ( Dumas et al.,
010 ; Gugnowska et al., 2022 ; Heggli et al., 2021 ; Kawasaki et al., 2018 ;
inreich et al., 2017 ; Novembre et al., 2016 ; Yun et al., 2012 )). The 𝛾env 

NS cluster had a bilateral occipital topography, strongly suggestive of
ctivity of the visual cortex (see e.g., Kong et al., 2018 ; van Ede et al.,
018 ). These clusters emerged when comparing Vision conditions vs.
aseline ( Fig. 2 b) as well as when comparing INS across Vision and
o Vision conditions (irrespective of interpersonal spatial proximity,
ig. 2 c). 

A third alpha ( 𝛼env 10–11 Hz) INS cluster indicated a complex inter-
ction between Vision and Interpersonal Spatial Proximity ( Fig. 2 c; 𝛼env 
NS cluster p = 0.019, Cohen’s d = 0.52). None of the follow-up (cluster-
ased permutation) t-tests aimed at assisting its interpretation yielded
ignificant results ( p s > 0.05). Furthermore, while the 𝛽env and 𝛾env INS
lusters were replicated in a series of control analyses relying on differ-
nt preprocessing pipelines, this was not the case for the 𝛼env INS cluster
supplementary Fig. S4). 

As a final note, we report that in another supplemental analysis we
ere able to replicate the above findings after segmenting the data from
ur trials (being 2 min long) into shorter epochs of either 60 s, 30 s, 20 s,
0 s, or 5 s (supplementary Fig. S5). 
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Fig. 2. Spontaneous emergence of Interpersonal Neural Synchrony (INS). a: Schematic representation of the computation of INS as the Pearson’s correlation 
between the electrode- and sub-band-specific EEG power time courses (i.e., envelopes) measured from the two individuals forming a dyad. b: T-values representing 
the statistical contrast between each experimental condition and baseline. INS was significantly enhanced (compared to baseline) only when participants could see 
each other (Far Vision 𝛾env INS cluster p = 0.004, Cohen’s d = 0.58; Near Vision 𝛽env and 𝛾env INS cluster p < 0.001, Cohen’s d = 0.68). Notably, in a separate analysis, 
we assessed that INS during the baseline condition was not statistically different from a test value of 0, indexing no correlation ( p > 0.05). c: T-values representing 
the statistical contrast across experimental conditions. INS was significantly enhanced during Vision, as opposed to No Vision conditions ( 𝛽env INS cluster p = 0.02, 
Cohen’s d = 0.62; 𝛾env INS cluster p = 0.002, Cohen’s d = 0.63). A third INS 𝛼env cluster reflected an interaction between Vision and Interpersonal Spatial Proximity 
( 𝛼env INS cluster p = 0.019, Cohen’s d = 0.52). Significance for all analyses was determined using a cluster-based permutation test. L = low sub-band, M = mid 
sub-band, H = high sub-band (the frequency ranges are reported in Table 1 ). 
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.2. INS does not simply depend on individual EEG modulations 

For control purposes, we conducted two additional analyses aimed at
ssessing whether INS depended only on neural modulations occurring
n one individual – i.e., irrespective of the modulations simultaneously
ccurring in the partner’s brain. 

In a first analysis, we compared intra -brain power across conditions,
ooling all participants regardless of the dyads. This analysis revealed
ower modulations, entailing multiple bands, induced by both visual
ontact and interpersonal spatial proximity (supplementary Fig. S6).
hese modulations were often qualitatively different from those asso-
iated with INS. For instance, 𝛾env power was not only enhanced when
articipants were able to see each other (Vision vs. No Vision), but also
hen they were closer to each other (Near vs. Far) (cluster p = 0.012,
ohen’s d = − 0.46). Furthermore, 𝛽env power was suppressed during
ision conditions, and this effect did not show any clear lateralization

ike what was observed in the 𝛽env INS cluster (compare supplementary
ig. S6 with Fig. 2 ; p = 0.005, Cohen’s d = 0.72; see also supplemen-
7 
ary Fig. S7 for power modulations separately for Vision and No Vision
onditions). 

In a second analysis, we demonstrated that INS emerged from dyad-
pecific interactions, as opposed to analogous EEG modulations occur-
ing in all participants and leading to spurious synchrony. We performed
 permutation analysis, forming surrogate dyads of participants that did
ot actually interact with one another (see Section 2.5.2 for details;
 Djalovski et al., 2021 ; Novembre et al., 2017 )). Comparing INS across
eal and surrogate dyads, we fully replicated our initial INS results and
dentified the same 𝛼env , 𝛽env , and 𝛾env INS clusters described above (Vi-
ion compared to No Vision: 𝛽env INS cluster p = 0.025, Cohen’s d = 0.60,

env INS cluster p = 0.002, Cohen’s d = 0.62; interaction between Vision
nd Interpersonal Spatial Proximity: 𝛼env INS cluster p = 0.016, Cohen’s
 = 0.52; see supplementary Fig. S8). 

Together, these results indicate that INS was not simply a by-product
f individual EEG modulations; rather, it reflected dyad-specific neural
ynamics, perhaps tracking real-time information transfer mediated by
ocial behavior. We investigate this hypothesis in the next analysis. 
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Fig. 3. Automated extraction of behavioral cues and their interpersonal synchrony . a: A number of behaviors were automatically extracted using a trained 
multi-stage Convolutional Neural Network (CNN) that first encoded the location and orientation of limbs in the image domain. The deep neural network was used 
to then estimate 25 body and 70 face landmarks. These landmarks were combined with eye tracking data in order to yield estimates of eye contact, whole body 
movement, and smiling behavior. Eye contact was estimated as the Euclidean distance between the center of the face (i.e., indexed by the landmarks associated with 
the nose) and the gaze of the partner. Body movement was estimated as the average movement change (i.e., first order derivative) across the 25 body landmarks. 
Smiling was estimated as the Euclidean distance between the landmarks associated with the two lip ends (see Section 2.4 for details). b: A (Pearson’s) correlation 
analysis revealed that all behavioral cues spontaneously synchronized, across members of a dyad, over time ( p < 0.05). Error bars represent standard errors. 
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Table 2 

Comparison of Reciprocal and Individual models. The 𝛾env INS cluster was better 
predicted by the REC model, while the 𝛼env and 𝛽env INS clusters were better 
predicted by the IND model. 

Cluster Model name PSIS-LOO estimate PSIS-LOO standard error Weight 

𝛼env REC Model − 234,508.11 264.94 0.49 
IND Model − 234,507.66 265.22 0.51 

𝛽env REC Model − 234,519.90 289.34 0.36 
IND Model − 234,516.63 289.30 0.64 

𝛾env REC Model − 234,261.92 335.57 0.75 
IND Model − 234,823.78 339.98 0.25 

PSIS-LOO estimate: Pareto-smoothed importance sampling leave-one-out cross- 
validation estimate values, PSIS-LOO standard error: the standard error for the 
PSIS-LOO computations, Weight: These weights can be loosely interpreted as 
the probability of each model being true (among the compared models) given 
the data. 
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.3. INS correlates with reciprocated (synchronous) behavior 

Having demonstrated that INS emerges spontaneously when two in-
ividuals simply look at each other, we searched for the behavioral cor-
elates of spontaneous INS. For this analysis, we focused on the Vision
onditions i.e., the experimental conditions where the two participants
ould see each other. A qualitative assessment of the video recordings
n multiple behaviors (see Supplementary Table T1 for a full list and
escription) identified three social behaviors that the dyads most fre-
uently displayed (see supplementary Fig. S1 and Section 2.4 ). These
ere: (i) eye contact, (ii) body movement (i.e., movement of any body
art), and (iii) smiling. Using deep learning-based automated analyses,
e extracted the time course of these behaviors for each participant
 Fig. 3 a; see also Section 2.4 for a detailed description). Next, we com-
uted the time course of INS, i.e., instantaneous INS, a measure used to
apture temporally resolved changes in synchrony (see Fig. 4 a, Section
.6.1 , and ( Zhang and Yartsev, 2019 )). 

We then tested whether and how instantaneous INS relates to these
ehaviors. We formulated two potential models for this interaction. Ei-
her the individual behavior of one participant, working as a signal,
s sufficient to observe INS (IND Model), or, such behavior needs to
e reciprocated and therefore occurs in both individuals simultaneously
REC Model). These models were analytically formalized by threshold-
ng the continuous behavioral cues and using either logical XOR opera-
ion (for the IND model) or logical AND operation (for the REC model)
see Section 2.6.2 for details). We compared the performance of these
wo models using Pareto-smoothed importance sampling leave-one-out
ross-validation (PSIS-LOO-CV; ( Vehtari et al., 2017 )). Results indicated
hat the 𝛾env INS cluster was better predicted by the REC model, while
he 𝛼env and 𝛽env INS clusters were better predicted by the IND model
 Table 2 ). Thus, reciprocated social behaviors (eye contact, body move-
ent, and smiling) predicted 𝛾env INS better than non-reciprocated be-
aviors (i.e., behaviors performed by only one individual within a dyad).
his result suggested that, similar to brain activity, some behaviors may
ave synchronized within a dyad. This suggestion was confirmed by a
orrelation analysis indicating that indeed body movement ( p < 0.001),
miling ( p < 0.001), and, to a lesser extent, eye contact ( p = 0.0456) were
ignificantly correlated (over time) across the two members of a dyad
8 
 Fig. 3 b). Notably, just like INS, these synchronous behaviors occurred
espite the absence of an instructed task. 

.4. Mapping INS clusters on specific behaviors 

We estimated the relationship between INS clusters and synchro-
ized behaviors using a Bayesian hierarchical (partial-pooling) linear
egression procedure, predicting instantaneous INS from instantaneous
ehavioral correlation ( Gelman et al., 2004 ). 

We first predicted INS using a model that included all three ex-
lored social behaviors: eye contact, body movement, and smiling.
his model outperformed the null model (random variations across the
yads) ( Fig. 4 b). Specifically, model comparison using PSIS-LOO cross-
alidation ( Vehtari et al., 2017 ) showed that the social behavior models
xplained INS variance better than their respective null models, and this
as so for all INS clusters ( Table 3 ). 

We then zoomed into the contribution of specific synchronized be-
aviors examining the posterior distribution of the regression parameter
stimates. Notably, the 𝛾env INS cluster was significantly predicted by
ody movement and smiling, irrespective of one another (posterior dis-
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Fig. 4. Behavioral cues predict Interpersonal Neural Synchrony (INS) . a: Representation of the computation of instantaneous (time-by-time point) correlations 
for interpersonal neural and behavioral synchrony. The instantaneous correlation index is computed by taking the time series from each dyad (X,Y, being brain or 
behavioral data) and first subtracting its mean and normalizing it to unit length (x, y). Each timepoint of this normalized data is then represented as a vector in 
2D space (x t ,y t ) where the axes correspond to normalized data from each subject. Next, the correlation index is computed from the angles subtended by the point 
(x t ,y t ), relative to a line at − 45° (i.e., a line orthogonal to the equality line at 45°). This is done by taking the smaller angle among the two angles subtended by 
the (x t ,y t ) vector to the line at − 45°. In such a scenario, a resultant angle of 90° represents a perfect correlation (the vector would be coincidental with the equality 
line at 45° angle), while an angle of 45° represents no correlation (the vector would be coincidental on one of the axes). Finally, the instantaneous correlation thus 
obtained was max normalized and ranged from 0 to 1. b: Behavioral cues (all combined) predicting each INS cluster in the Vision conditions. The bar plots represent 
pareto-smoothed importance sampling leave-one-out (PSIS-LOO) cross-validation values for model comparison across the three INS clusters (represented by their 
respective topographies in the top row). The model combining all behavioral cues explained INS variance in all clusters better than their respective null models. c: 
Individual behavioral cues predicting each INS cluster. Posterior plots for the regression coefficients for each behavioral cue and each of the three INS clusters. Eye 
contact predicted 𝛽env INS, while body movement and smiling predicted 𝛾env INS. The red vertical bar represents the value ‘0 ′ , while the dark horizontal bar below 

each posterior plot shows the 90% highest density interval (HDI). Error bars represent standard errors. ∗ p < 0.05, ∗ ∗ ∗ p < 0.001. 
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ribution overlap (P p|D ) [smiling < 0] < 0.001, P p|D [body movement <
] < 0.001). Furthermore, the 𝛽env INS cluster was significantly predicted
y eye contact (P p|D [eye contact < 0] = 0.042) ( Fig. 4 c, Table 4 ). Fi-
ally, the 𝛼env INS cluster was not predicted by any of the synchronized
ehaviors ( p > 0.05). 

Hence, when all behaviors were combined into a single model, we
ould successfully predict all INS clusters. Instead, predicting INS clus-
ers using specific behaviors yielded a more detailed picture. Specifi-
ally, synchronized body movement or smiling, taken alone, predicted

env INS. Only eye contact predicted 𝛽env INS. And no behavior alone
redicted 𝛼env INS. 
9 
.5. Synchronized behavior anticipates and predicts INS 

Having identified a tight relationship between instantaneous INS and
ynchronized social behavior, we aimed at determining the temporal
elationship between these variables. 

To achieve this, we first cross-correlated the time course of INS and
ehavioral synchrony, separately for each specific social behavior and
NS cluster ( Fig. 5 a). The results of this analysis indicated that synchro-
ized social behavior, and specifically body movement and smiling, co-
ccurred with 𝛾env INS ( Fig. 5 b). Notably, synchronized smiling behav-
or slightly anticipated INS (see inset in Fig. 5 b), with a temporal lag



A. Koul, D. Ahmar, G.D. Iannetti et al. NeuroImage 277 (2023) 120233 

Table 3 

Model performances for the brain-behavior relationship. The Social behavior model 
explained INS variance in all clusters better than the null models. 

Cluster no. Model name LOO estimate LOO standard error Weight 

𝛼env Null Model − 224,615.00 259.73 0.11 
Social behavior model − 224,594.53 259.73 0.89 

𝛽env Null Model − 224,617.66 283.11 0.46 
Social behavior model − 224,617.12 283.06 0.54 

𝛾env Null Model − 223,632.62 328.34 0.0 
Social behavior model − 223,359.73 327.99 1.0 

PSIS-LOO estimate: Pareto-smoothed importance sampling leave-one-out cross- 
validation estimate values, PSIS-LOO standard error: the standard error for the PSIS- 
LOO computations, Weight: These weights can be loosely interpreted as the proba- 
bility of each model being true (among the compared models) given the data. 

Table 4 

Regression coefficient estimates for the brain-behavior relationship. The 𝛾env INS cluster was significantly predicted by body movement and smiling, irrespectively 
from one another, while the 𝛽env INS cluster was significantly predicted by eye contact. Significant effects shown in bold. 

Cluster Parameter Mean estimate P p|D [parameter < 0] 90% HDI R-hat value 

𝛼env Eye contact 0.0018 0.27 [ − 0.0028 0.0065] 1.002 
Body movement − 0.0049 0.4 [ − 0.013 0.0032] 1.001 
Smiling − 0.00063 0.57 [ − 0.0063 0.0056] 1.001 

𝛽env Eye contact 0.0056 0.042 [0.00036 0.011] 1.0 

Body movement 0.0012 0.34 [0.0034 0.0054] 1.001 
Smiling 0.00056 0.57 [ − 0.0063 0.005] 1.0 

𝛾env Eye contact − 0.00046 0.54 [ − 0.0079 0.0071] 1.0 
Body movement 0.021 0.0002 [0.013 0.029] 1.0 

Smiling 0.035 0 [0.021 0.05] 1.0 

Mean estimate: Average coefficient estimates from the posterior distribution, P p|D : posterior distribution overlap of the parameter higher than the test value of ‘0 ′ , 
90% HDI: 90% Highest density interval, R-hat value: R-hat convergence diagnostic compares the between- and within-chain estimates for model parameters. An 
R-hat value that deviates away from the value of 1 reflects issues with the model convergence. 
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f ∼200 ms. This suggested that synchronized smiling behavior was fol-
owed by 𝛾env INS after a time interval of ∼200 ms. This precise temporal
elationship was identified only in the 𝛾env INS cluster, while the 𝛼env 
nd 𝛽env INS clusters did not exhibit a clear temporal relationship with
ynchronized behavior. 

Next, to shed further light upon the relationship between INS and
ocial behavior, and to identify dependencies having potentially vari-
ble time lags, we used Granger causality analysis. This aimed to es-
ablish whether synchronized social behavior granger-caused INS, vice
ersa, or both. The results revealed that INS and synchronized social
ehavior mutually granger-caused each other, as suggested by the fact
hat all pairwise-conditional time-domain multivariate Granger causal-
ties (MVGCs) were significantly higher than 0 ( p s < 0.001). Crucially,
owever, the MVGCs tagging the effect of behavioral synchrony on INS
ere significantly higher than those tagging the opposite relationship
 p s < 0.05), hence implying that behavioral synchrony was more likely to
ranger-cause INS than vice versa. This result generalized well across all
NS clusters and social behaviors, implying that even though we could
ot observe a temporally- fixed relationship between social behaviors
nd the 𝛼env and 𝛽env INS clusters (as indicated by the cross-correlation
oefficients), these INS clusters were still likely to be granger-caused
y synchronized social behaviors, probably with a time lag that varied
cross trials and/or dyads. 

. Discussion 

In the current study, we investigated the origins of Interpersonal
eural Synchrony (INS) by recording spontaneous behavior and brain
ctivity from dyads of participants. We observed that, despite the ab-
ence of a structured task, INS emerged spontaneously when participants
ould simply see each other. 

The observed INS had a specific spectral and topographic profile,
omprising the envelopes of frontal alpha ( 𝛼env ), right-posterior beta
 𝛽env ), and occipital-parietal gamma ( 𝛾env ) EEG activity. This pattern
10 
f interpersonal neural activity could not be simply explained by similar
ntrapersonal neural activities (i.e., neural activities occurring in both
ndividuals irrespective of their partners), for the following two rea-
ons: first, because analyzing intra-neural activity separately for each
ndividual yielded a markedly different pattern of results, and, second,
ecause our results could not be replicated when extracting INS from
urrogate dyads. Hence, the observed INS emerged from dyad-specific
nteractions. 

Probing the behavioral correlates of spontaneous INS, we used ad-
anced image processing, deep learning, and computational modeling
o demonstrate that INS was rooted in behavioral synchrony. Notable
ehavioral cues – eye contact, smiling, and body movement – were re-
iprocated across dyads. Each of these behaviors predicted and Granger-
aused the emergence of spectral and topographic specific INS. 

.1. Spontaneously-emerging synchrony 

We conceptualize the above results in terms of a “spontaneously-
merging ” synchrony, i.e., co-occurrence of similar spontaneous behav-
or and neural activity arising without an explicit task. Indeed, the ob-
erved synchrony emerged even though participants weren’t performing
ny structured task or achieving an instructed collective goal. While the
ajority of neuroscientific studies would tacitly assume that recording

ehavioral and neural activity in the absence of a task would lead to
npredictable changes over time, here we show that having two indi-
iduals sharing the same (social) environment leads to coupled vari-
tions of both behavior and brain activity. This implies that interper-
onal synchrony, including INS, can be conceptualized as a fundamental
mergent property of two coupled biological systems, i.e., in this case,
wo humans being coupled through visual contact. This observation and
onceptualization are remarkably compatible with dynamical systems
heory ( Kelso, 1995 ). In particular, the synchronization between two
iological systems could be seen as a self-organized process emerging
pontaneously and without the need of any external ordering or instruc-
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Fig. 5. Temporal relationship between INS and synchronous social behavior. a: Schematic description of the cross-correlation analysis. Cross-correlation tracks 
the similarities of two time series (A and B) as a function of their relative displacement. Given two vectors A and B, cross-correlation measures the similarity between 
A and shifted (lagged) copies of B as a function of the lag. The analysis is useful to determine how well the two time series match up with each other and, in 
particular, at what lag the best match occurs. b: Cross-correlation coefficients and multivariate Granger causalities between behavioral synchrony and interpersonal 
neural synchrony. The black line represents the averaged correlation coefficients across ± 10 s time lags while the gray shaded area represents the standard error 
of mean at each timepoint. The heat background plots represent the significance of the coefficients (t-values, FDR corrected, significant coefficients are marked by 
a thicker red line). The bar graphs represent multivariate Granger causalities (dots represent single dyads). Note that all behavioral cues granger-caused INS (light 
blue bars), even though only some of them anticipated INS with a fixed temporal relationship. CGC = conditional Granger causalities, BEH = Behavioral synchrony, 
INS = Interpersonal neural synchrony. Error bars represent standard errors. ∗ p < 0.05. The black arrow on the heat plots represents the peak in the cross-correlation. 
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ion ( Camazine et al., 2003 ; Pezzulo et al., 2019 ). As such, INS would be
eminiscent of many other self-organized entrainment phenomena ob-
erved across very heterogeneous fields of research, including psychol-
gy ( Oullier et al., 2008 ; Richardson et al., 2007 , 2005 ; Schmidt et al.,
998 ; Varlet et al., 2017 ), ethology ( Ballerini et al., 2008 ; Buhl et al.,
006 ; Cavagna et al., 2010 ; Couzin, 2007 ; Yates et al., 2009 ), or even
hysics ( Peña Ramirez et al., 2016 ; Von Humboldt, 1846 ). For instance,
11 
NS might be qualitatively similar to the spontaneous synchronization
f behavioral states in multiple collective animal behavior like flocking
n birds ( Ballerini et al., 2008 ), or swarms of insects ( Yates et al., 2009 ).

The fact that INS can emerge spontaneously (i.e., in the absence
f a given task) has remarkable implications for the majority of pre-
ious studies investigating INS. Indeed, these studies have attributed
NS to specific social tasks entailing coordination ( Dumas et al., 2010 ;
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offmann et al., 2019 ), conversation ( Dikker et al., 2021 , 2014 ;
iang et al., 2012 ; Kinreich et al., 2017 ; Stephens et al., 2010 ), and
ooperation ( Cui et al., 2012 ; Liu et al., 2017 ; Toppi et al., 2016 ). If,
s we have shown, INS does not need an instructed collective goal to
merge ( Kourtis et al., 2019 ; Saito et al., 2010 ; Sebanz et al., 2006 ;
esper et al., 2010 ), then it follows that we might need to reconsider our

nvestigative approach for this phenomenon. Indeed, several studies in
his field have observed INS while participants face each other and also

erform a structured social task ( Barraza et al., 2020 ; Dikker et al., 2017 ;
jalovski et al., 2021 ; Fishburn et al., 2018 ; Hu et al., 2018 ; Liu et al.,
021 ; Meshulam et al., 2021 ; Pinti et al., 2021 ; Reinero et al., 2021 ;
ang et al., 2016 ). Would the observed INS be driven by the actual task,
r by (not monitored) behavioral cues such as the ones we character-
zed here? If the latter holds true, then we might not need formal tasks
o understand INS after all. 

The proposition that INS is better investigated under natural and
nconstrained behavior is further reinforced by recent animal studies
 Kingsbury et al., 2019 ; Yang et al., 2021 ; Zhang and Yartsev, 2019 ).
or instance, in pairs of freely-behaving, interacting mice, INS emerges
uring periods of naturally-occurring social behavior (e.g., sniffing, es-
ape and approach) but not during non-social behaviors (e.g., nesting,
igging, and self-grooming) ( Kingsbury et al., 2019 ). Other studies, ex-
mining groups of freely-behaving bats, have even described frequency-
pecific INS in the gamma band envelope (as in the current study)
 Rose et al., 2021 ; Zhang and Yartsev, 2019 ). Remarkably, this gamma
NS was proved to be specific to spontaneous – as opposed to instructed
vocal interactions ( Rose et al., 2021 ). 

.2. Spontaneously-emerging INS is associated to social behavior 

We probed the correlates of INS by looking into social behaviors such
s eye contact, body movement, and smiling. To extract these data using
n unbiased and unsupervised approach, we used a combination of ad-
anced video-image processing, deep learning, and computational mod-
ling. We found that these spontaneous behaviors were synchronized
etween the two partners of a dyad. Using a quantitative computational
odel we estimated the time-by-time relationship between the neural

ynchrony and the various behavioral synchronies. This allowed us to in-
estigate the association between the behavioral and neural synchrony
nd to precisely quantify the contribution of each different behavior to
NS ( Hamilton, 2021 ). Modeling all social behaviors together, we were
ble to predict all clusters of INS (i.e., 𝛼env , 𝛽env , and 𝛾env ), strongly im-
lying a relationship between INS and behavioral synchrony. Further,
hen we modeled select social behaviors and their relationship to select

NS clusters, we identified specific relationships: eye contact was asso-
iated to 𝛽env INS, while body movement and smiling were associated
o 𝛾env INS. It is very difficult to interpret the functional significance of
hese relationships. We speculate that the 𝛾env INS might reflect a con-
urrent state of high visual attention and arousal, which might mediate
nformation transfer of salient social cues such as body movement and
miling ( Stein et al., 2000 ; Steinmetz et al., 2000 ). The 𝛽env INS clus-
er is harder to interpret. Several previous studies have shown similar
NS topographies (associated to both EEG and fNIRS datasets) and, over-
ll, have shown that these activities are driven by cooperative behavior
for a meta-analysis, see Czeszumski et al., 2022 ). From this perspec-
ive, this finding might fit with evidence showing that eye contact pro-
ides a means to extract or deliver social cues during cooperative tasks
 Jarick and Kingstone, 2015 ; Siposova et al., 2018 ). These hypotheses
re speculative in nature and call for further work. 

Irrespective of the precise functional significance of the INS clusters,
aving probed the behavioral correlates of INS has two important im-
lications. First, it directly links INS to a myriad of previous studies in
ocial psychology that highlight the importance of these behavioral cues
n mediating social interactions ( Adolphs and Tusche, 2017 ; Argyle and
ean, 1965 ; Bull, 2001 ; Depaulo, 1992 ; Kleinke, 1986 ; Martin et al.,
017 ). For instance, smiling is often conceptualized as a powerful social
12 
ignal that can easily grab the attention of an observer ( Campos et al.,
015 ; Chang et al., 2014 ; Martin et al., 2017 ). Similarly, eye contact
as been suggested to signal the intention to establish a communica-
ive interaction ( Farroni et al., 2002 ; Kleinke, 1986 ; Leong et al., 2017 ;

ass et al., 2020 ). Finally, coordinated body movement is a widespread
eans of communication and cooperation observable in humans and

everal other species ( Greenfield, 1994 ; Pezzulo et al., 2013 ). 
Second, our results highlight the importance of properly quantifying

nd characterizing behavior while interpreting the significance of brain
ctivity. Previous research has mostly overlooked and underestimated
he relationship between behavioral cues and INS. For example, while
ome studies focus only on select indices of task performance ( Cui et al.,
012 ; Dikker et al., 2017 ; Meshulam et al., 2021 ; Xue et al., 2018 ), oth-
rs do not record behavior at all ( Hasson et al., 2004 ; Pinti et al., 2021 ;
edcay et al., 2010 ). Indeed, without an extensive characterization of
ehavior, it is difficult to understand the origin of brain signals, includ-
ng INS and its underlying mechanisms. Hence, our study reinforces the
ecent call for richer quantifications of behavior in the context of neu-
oscience studies ( Krakauer et al., 2017 ), including hyperscanning ones
 Hamilton, 2021 ). 

.3. Ruling out artifactual origins of INS 

It is imperative to also discuss a potential artifactual origin of our INS
lusters, especially the 𝛾env INS cluster, given that previous research has
hown that movement artifacts can leak signal in this frequency band
 Goncharova et al., 2003 ; Kappel et al., 2017 ). We highlight two spe-
ific results that rule out this interpretation. First, the posterior topog-
aphy of the 𝛾env INS is not reminiscent of that commonly associated
ith movement artifacts. For instance, EMG artifacts from jaw move-
ents have been shown to predominantly have a fronto-temporal topog-

aphy ( Goncharova et al., 2003 ; Kappel et al., 2017 ). Likewise, other
ovements such as eye-blinking, vertical or horizontal saccades, or ver-

ical or horizontal head movements do not lead to prominent modula-
ions of 𝛾env on posterior electrodes ( Kappel et al., 2017 ). Second, the
ata in the current study underwent a thorough preprocessing pipeline
namely Artifact Subspace Reconstruction (ASR) – with a very aggres-

ive cutoff parameter ( n = 10) that has been shown to successfully re-
ove movement artifacts while retaining brain signals ( Anders et al.,
020 ; Chang et al., 2018 ; Plechawska-Wojcik et al., 2019 ; Richer et al.,
020 ). This was confirmed by visual inspection of the EEG data, which
ndicated that the topographical distribution of gamma power was not
eminiscent of that typically associated with muscular artifacts (see sup-
lementary Figs. S6 and S7; and Goncharova et al., 2003 ; Kappel et al.,
017 ). Notably, these results were also corroborated by a control analy-
is where, following Independent Component Analysis (ICA), we dis-
arded all Independent Components (ICs) having artifactual or non-
hysiological topographies (see supplementary Fig. S4) ( Frølich and
owding, 2018 ; Klug and Gramann, 2021 ). 

Last but not least, we stress that 𝛾env INS was not the only INS cluster
redicted by behavioral cues. Actually, when all behaviors were com-
ined together, we could also explain 𝛼env and 𝛽env INS better than the
ull models (see Table 3 ). Hence, all the INS clusters were predicted by
ehavior, even those falling into frequency bands that are less prone to
apture movement artifacts. 

.4. Value of automatized behavioral analysis 

Having demonstrated the general importance of properly monitor-
ng behavior in the context of neuroscientific studies, we now highlight
ome important advances that our study brings to the field of social
euroscience. 

We were able to reconstruct behavioral cues such as body movement,
miling, and eye contact using a rigorous methodology that is faster,
heaper, more rater-independent, and less subject to human error com-
ared to current practices in social neuroscience ( Kingsbury et al., 2019 ;



A. Koul, D. Ahmar, G.D. Iannetti et al. NeuroImage 277 (2023) 120233 

K  

Y  

u  

2  

i  

a  

f  

2  

a  

m
 

v  

a  

a  

f

4

 

t  

b  

s  

c  

v
 

s  

m  

s  

b  

P  

Y  

b  

(  

t  

c  

(  

b  

o
 

I  

t  

t  

t  

t  

i  

l  

b  

c  

2
 

s  

i  

s  

s  

2  

s  

u  

s

D

 

I
 

(

D

C

 

M  

d  

v  

a  

&  

v
r  

t

A

 

u  

k  

M  

C

S

 

t

R

A  

A  

 

 

A  

A  

 

B  

 

B  

 

 

 

B  

 

B  

 

B  

 

B  

 

B  

 

B  

 

B
B  

 

C  

C  

 

inreich et al., 2017 ; Levy et al., 2017 ; Nguyen et al., 2021 ; Zhang and
artsev, 2019 ). For instance, while body movement is often measured
sing expensive systems, requiring time-consuming analyses ( Hale et al.,
020 ; Yun et al., 2012 ), here we were able to automatically extract this
nformation from simple videos. Furthermore, while specific behaviors
re often manually coded from video recordings in a frame-by-frame
ashion ( Djalovski et al., 2021 ; Kingsbury et al., 2019 ; Kinreich et al.,
017 ; Levy et al., 2017 ; Rose et al., 2021 ), here we were able to do so
utomatically by combining deep learning predictions with the infor-
ation acquired by the eye trackers. 

Hence, our methodology may pave the way for future ecologically-
alid studies combining rich behavioral datasets with measures of brain
ctivity. In particular, exploring the natural complexity of social inter-
ctions under unconstrained, possibly ecological, conditions might be
acilitated by the use of deep learning approaches ( Koul et al., 2023 ). 

.5. Causal relationship between INS and behaviors 

Using cross-correlation and Granger causality, we investigated the
emporal relationship between behavioral synchronies (eye contact,
ody movement, and smiling) and INS. We observed that while both
ynchronized social behavior and INS granger-caused each other, syn-
hronized social behavior had a higher predictive effect on INS than vice
ersa. 

The causal relationship between INS and behavior has been the
ubject of recent prolific debates ( Hamilton, 2021 ; Moreau and Du-
as, 2021 ; Novembre and Iannetti, 2021a , 2021b ). The majority of the

tudies in the field implicitly assume that INS leads to changes in social
ehavior ( Cui et al., 2012 ; Li et al., 2021 ; Lindenberger et al., 2009 ;
iazza et al., 2020 ; Reinero et al., 2021 ; Sänger et al., 2012 , 2011 ;
ang et al., 2021 ; Yun et al., 2012 ). Support to this assumption has
een provided by studies showing that by exogenously enhancing INS
using multibrain stimulation) it is possible to augment social interac-
ion – including interpersonal coordination ( Novembre et al., 2017 ), so-
ial learning ( Pan et al., 2021 ), and even spontaneous social behavior
 Yang et al., 2021 ). However, other authors have also suggested that
ehavioral cues might cause INS through a phase resetting of neural
scillations ( Leong et al., 2017 ; Wass et al., 2020 ). 

A third possibility, which is directly supported by our study, is that
NS and social behavior reciprocally influence each other. Indeed, even
hough we observed a stronger influence of behavioral cues over INS,
he opposite directionality was also significant. Future research should
ry to better understand what factors affect the causal directionality be-
ween INS and social behavior. For instance, one factor that might be
mportant is the availability of information about a partner. We specu-
ate that when information is readily available, social behavior would
e more likely to drive INS, while the opposite could be predicted for
onditions in which information is hardly available ( Gugnowska et al.,
022 ; Novembre et al., 2017 ). 

Finally, we wish to stress that the evidence of a relationship between
pontaneous INS and social behavior provided by the current research
s only correlational. Recently, it has been suggested that such evidence
hould be complemented by truly causal methods such as multibrain
timulation ( Moreau and Dumas, 2021 ; Novembre and Iannetti, 2021a ,
021b ). We suggest that to fully clarify the causal relationship between
ocial behavior and INS, analytic methods (such as Granger causality,
sed in the current study) should be complemented by other approaches
uch as multibrain stimulation. 
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