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Music is a human communicative art whose evolutionary origins may lie in
capacities that support cooperation and/or competition. A mixed account
favouring simultaneous cooperation and competition draws on analogous
interactive displays produced by collectively signalling non-human animals
(e.g. crickets and frogs). In these displays, rhythmically coordinated calls
serve as a beacon whereby groups of males ‘cooperatively’ attract potential
female mates, while the likelihood of each male competitively attracting an
actual mate depends on the precedence of his signal. Human behaviour con-
sistent with the mixed account was previously observed in a renowned boys
choir, where the basses—the oldest boys with the deepest voices—boosted
their acoustic prominence by increasing energy in a high-frequency band of
the vocal spectrum when girls were in an otherwise male audience. The cur-
rent study tested female and male sensitivity and preferences for this subtle
vocal modulation in online listening tasks. Results indicate that while
female and male listeners are similarly sensitive to enhanced high-spectral
energy elicited by the presence of girls in the audience, only female listeners
exhibit a reliable preference for it. Findings suggest that human chorusing is a
flexible form of social communicative behaviour that allows simultaneous
group cohesion and sexually motivated competition.
1. Introduction
Music, as a communicative medium for individual and collective expression,
constitutes a microcosm of social interaction [1]. Evolutionary accounts propose
that music fulfils social functions in group cohesion, coalition signalling, court-
ship, infant–caregiver bonding and cultural identity [2–6]. These functions rely
on capacities supporting the synchronization of rhythms and harmonization of
pitches among individuals singing or playing instruments together [7–11]. As in
other social animals [12–14], such capacities were presumably selected for
benefits related to cooperation, competition, or mixtures of these [15–19].

On the mixed account, music can function both cooperatively and competi-
tively, and doing so simultaneously allows different forms of communication to
occur in parallel at group and individual levels [20]. Taking a comparative
approach [11,21,22], this hypothesis was motivated by observations that in
some non-human animals (e.g. flashing fireflies and chorusing crickets and
frogs), simultaneous cooperation and competition is manifest in rhythmically
coordinated communal displays produced by groups of males to attract
female mates [23–25].

In these displays, seemingly cooperative coordination, which increases the
salience of the collective broadcast (beacon effect) [26,27], can be a side-effect
of sexually motivated competition whereby individual males produce earlier
or more intense signals that mask rival signals (precedence effect) [14] while
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triggering timing adjustments in neighbouring individuals
[28,29]. The mechanisms that govern these adjustments
affect the inter-individual phase alignment of signals, and
predominantly give rise to synchrony or alternation [30].

Non-human chorusing may have evolved in response to
multi-level selection pressures [31]. Rhythmically coordi-
nated clusters of males who produce more attractive
beacons than neighbouring clusters could be favoured by
group selection [32]. Mechanisms that give rise to precedence
effects in response to female preferences for energetic male
signals could be favoured by individual selection [33–35].
Conspecific males may, nevertheless, be sensitive to pre-
cedence effects because this facilitates eavesdropping on
others’ courtship signals [36–39].

Support for the hypothesis that human music can func-
tion to support simultaneous cooperation and competition
was found in a study with a renowned boys choir, the St
Thomas Choir of Leipzig [20]. Results indicated that the
basses—the oldest boys with the deepest voices—exhibited
increased energy in the ‘singer’s formant’ (2500–3500 Hz) fre-
quency region of the vocal spectrum [40,41] when girls were
included in an otherwise male audience. Because the singer’s
formant adds an attractive ringing quality to the voice
[42–44], the observed enhancement could reflect an attempt
by sexually mature boys to compete for female attention
without undermining collaborative musical goals.

The current study addressed the functional relevance of
this behavioural modification by testing whether the
enhanced singer’s formant is detectable by listeners, and
whether preferences for it are affected by sex. In two online
perceptual studies, female and male listeners (N = 2247)
were presented with pairs of audio excerpts from the original
choir performances with or without girls in the audience.
Two musical pieces that varied in degree of rhythmic
unison between voices (approximating synchrony versus
alternation) were included to test the generality of effects. Lis-
teners either reported which excerpt they believed was sung
in the presence of girls (sensitivity study) or which excerpt
they preferred (preference study). Female sensitivity and pre-
ference for the enhanced singer’s formant would be
consistent with beacon and precedence effects, while male
sensitivity without preference would be consistent with
eavesdropping.
2. Methods
(a) Participants
The participants were 679 females (aged 12–71 years) and 481
males (aged 17–81) in the sensitivity study, and 655 females
(aged 13–78) and 432 males (aged 12–86) in the preference
study, including individuals with and without musical training
(see electronic supplementary material [45]).
(b) Design
The sensitivity study tested the ability of female and male listen-
ers to identify which item from pairs of excerpts of choral
performances of two musical pieces was sung in the presence
of girls in the audience. The independent variables were listener
sex (female or male) and musical piece (Chorale or Fugue), and
the dependent variable was the percentage of excerpt pairs in
which listeners selected the correct item (i.e. the excerpt sung
with females present). The preference study assessed which
items were preferred.

(c) Materials
This stimulus set included 12 pairs of items consisting of audio
excerpts from performances of a Chorale and a Fugue—sung
by an elite boys choir to audiences in which girls were present
or absent [20]. The pieces were composed by Johann Sebastian
Bach for a four-part choir setting comprising soprano, alto,
tenor, and bass voices. The Chorale’s homophonic texture
requires rhythmic unison and strict synchrony between parts,
whereas the Fugue’s polyphonic texture has greater rhythmic
independence between parts. The singers were 16 members of
the St Thomas Choir of Leipzig in Germany: four sopranos
(aged 12–13 years); four altos (aged 12–16); four tenors (aged
16–18); four basses (aged 16–19). The performances were
recorded with a video camera, from which audio was extracted.

Brief excerpts (3–6 s duration) were selected from the full
choir recordings and compiled into 12 stimulus pairs wherein
one item came from a performance sung with girls present and
the other with girls absent from the audience. Excerpts from per-
formances sung with girls present occurred as the first item in
half of the stimulus pairs and as the second item in the other
half. Additional items from the Chorale were selected for a prac-
tice trial and to check the reliability of listener responses.
Acoustic analyses of the 12 main items (see electronic sup-
plementary material [45,46]) confirmed that energy in the
singer’s formant region was higher for excerpts sung with girls
present, and additionally revealed that the effect was stronger
for the Chorale than the Fugue (figure 1a–c), possibly because
greater spectral change is required to stand out from the homo-
geneous than the polyphonic texture. Performance timing
and overall intensity did not vary with the presence of girls
(electronic supplementary material [45,46]).

(d) Procedure
The sensitivity study and the preference study were conducted
on an online survey platform that participants accessed remotely
on their own devices. In the sensitivity study, participants were
informed that they would be presented with pairs of short
excerpts from two live concerts, that girls were present in the
audience for only one concert, and that the task was to indicate
which excerpt was more likely to come from that concert. For
the preference study, participants were informed that they
would be presented with pairs of excerpts from two live concerts,
and that the task was to indicate which performance they
preferred. The use of headphones was recommended.

For the test items that followed, participants were presented a
text prompt, a media player, and two clickable response buttons
(labelled ‘Performance 1’ and ‘Performance 2’). The 12 stimulus
items were blocked by musical piece (Chorale and Fugue),
with block order randomized across participants. Presentation
order of the six pairs of excerpts (Chorale or Fugue) within
each test block was also randomized (with the reliability
check item interspersed). Following the listening task, a back-
ground questionnaire was presented to collect information
about participant age, sex, musical experience (formal training
and choir participation), and cultural background (European,
non-European, or mixed).
3. Results
(a) Sensitivity
Listener sensitivity data, indicating the percentage of items
where participants correctly selected the excerpt with an
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Figure 1. Audio analyses show increases in high-frequency spectral energy
for male choir performances when girls were in the audience. (a) Time-
averaged spectra ( filtered using the Terhardt outer ear model [47]
to reflect human hearing sensitivity) for audio recordings of the
homophonic Chorale piece with rhythmic synchrony between vocal
parts, showing increased energy in the 2500–3500 Hz singer’s formant
frequency region when girls were present versus absent. (b) Corresponding
spectra for a polyphonic Fugue, with rhythmically independent vocal parts.
(c) Percentage of energy in the singer’s formant (SF) region for individual
stimulus excerpts from the two pieces, showing less pronounced SF energy
for the Fugue.
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enhanced singer’s formant (i.e. from performances sung with
girls in the audience), are displayed in figure 2a. A Wilcoxon
test on all data pooled (averaged across musical pieces)
revealed that sensitivity scores were overall significantly
higher than expected by chance (50%) (V = 277274, p <
0.001). Binomial generalized linear mixed model (GLMM)
analyses of these data (see electronic supplementary material,
[45,46]) indicated that models that included listener sex,
musical piece, listener age, and musical experience (plus
interactions) as fixed factors (Full Models 2 & 3 in electronic
supplementary material, table S4), and participant and item
as random effects, had greater explanatory power than
alternative models. However, none of the fixed factors (or
interactions) were significant predictors of sensitivity scores
in these best-fitting models. Additional Wilcoxon tests
revealed that sensitivity scores were significantly higher
than chance for female listeners and male listeners for the
Chorale (females: V = 79800, p < 0.001; males: V = 38815, p <
0.001), but not for the Fugue (females: V = 57710, p = 0.071;
males: V = 32554, p = 0.418). Listeners were thus generally
sensitive to the enhanced singer’s formant for the homopho-
nic Chorale, but results for the polyphonic Fugue were less
reliable (possibly due to less pronounced energy modulation;
figure 1c).

(b) Preference
Listener preference data, indicating the percentage of items
where the excerpt with an enhanced singer’s formant was
selected as being preferred, are displayed in figure 2b. Overall
preference scores were statistically significantly higher than
chance (V = 220124, p < 0.001). GLMM analyses (see electronic
supplementary material, [45,46]) revealed that a model
including listener sex and musical piece (and their inter-
action) as fixed factors (Full Model 1 in electronic
supplementary material, table S7) had greater explanatory
power than a reduced model containing only random effects
(participant and item). Alternative models that additionally
included listener age, musical experience, and cultural back-
ground as fixed factors did not increase explanatory power
significantly. For the best-fitting model, there was a statisti-
cally significant effect of listener sex on preference scores
(estimate = 0.133, SE = 0.051, z = 2.60, p = 0.009) but no
further significant effects. Additional tests confirmed that
female scores were significantly above chance for the
Chorale (V = 59954, p < 0.001) and the Fugue (V = 57862,
p < 0.001). Male scores were not significantly different from
chance for either piece (Chorale: V = 21661, p = 0.928;
Fugue: V = 23514, p = 0.190). Female listeners thus exhibited
a preference for the enhanced singer’s formant that general-
ized across musical pieces, whereas males did not show
reliable preferences.
4. Discussion
Our results indicate that female and male listeners are sensitive
to the enhanced singer’s formant in male chorusing, but
only females prefer it. Boosting high-frequency spectral
energy may thus constitute an attempt by male singers to
establish a privileged social communication channel with
female listeners.

Overall findings—which generalize across listener age,
musical experience, and cultural background—are consistent
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with characterizing human chorusing as a form of social be-
haviour that allows selfish competitive drives to be pursued
without disrupting cooperative behaviour. In this multi-
level display, sexual competition at the individual level coex-
ists with social cooperation at the group level [20]. Our
interpretation draws an analogy with chorusing displays by
groups of males to attract female mates in other species
[23–25] (though here via spectral rather than temporal or
amplitude effects). Female listener sensitivity and preference
for the enhanced singer’s formant might correspond to
female responsiveness to prominent male signals in these
species [33]. Male listener sensitivity without preference
may be akin to the ability of eavesdropping non-human
males to detect others’ courtship signals [37,39].

The observed differences for the homophonic Chorale
and the polyphonic Fugue are reminiscent of distinct forms
of non-human chorusing characterized by synchrony or alter-
nation [32,48]. These two coordination modes are prominent
in human music [49], where multi-part textural variations
range from rhythmic unison (with voices singing different
pitches in harmony or the same pitches, as in chanting) to
complex interlocking rhythms [50]. Reliable female listener
preferences despite reduced detectability with the polyphonic
Fugue (with weaker singer’s formant enhancement) suggest
implicit processing consistent with perceptual biases in
other species [28].

The current proposal that music can simultaneously fulfil
cooperative and competitive functions supplements existing
evolutionary accounts, which rely to differing degrees on
cooperation or competition. These accounts appeal to different
selection models (from sexual to multilevel) [2,6,7,18,51,52],
with proposals favouring sexual selection of male courtship
displays attracting criticism, partly because musicality is not
sexually dimorphic [2,6,53]. Our focus on male chorusing
might therefore appear controversial. Moreover, the enhanced
singer’s formant in our choir recordings was produced
by members of the bass section [20], i.e. older boys with
deep voices.

Basses possibly have relatively high levels of testosterone
[54], which lengthens the male vocal tract by stimulating a
secondary descent of the larynx during puberty [55,56]. The
resulting lower fundamental frequency and reduced dis-
persion in formant frequencies [57] can increase perceived
vocal attractiveness and dominance [58,59], perhaps by exag-
gerating body size [60–62], though this effect might be
specific to speech and possibly reverses in singing [63].
Higher-voiced tenors may thus hold an advantage and,
furthermore, might not require additional enhancement
because the centre frequency of their singer’s formant cluster
is higher (hence more salient) than in basses [40].

Importantly, while enhancement of the singer’s formant is
typically associated with male voices, related spectral modu-
lations can occur in females [64–66], consistent with sexual
non-dimorphism [6]. It would therefore be prudent to study
female and mixed-sex chorusing to test whether male listeners
have preferences for corresponding modulations in female
voices before proposing specific selection mechanisms. Poten-
tial effects of sexual orientation for both singers and listeners
constitute another worthwhile topic for future research.

Evolutionary considerations aside, our findings demon-
strate flexibility in human vocal expression for social
communication, specifically in the modulation of spectral
properties influencing voice timbre, which has received less
attention than pitch and timing. These properties transmit
personal information [67,68] and play a role in mate attraction
[59,69]. Speakers spontaneously alter their voices when inter-
acting with desirable conversation partners [70–73], and
manipulate vocal fundamental frequency and formants to
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sound dominant, larger, and sexually appealing [60,74].
Related phenomena may occur in instrumental music, but
the ancient and universal status of singing [75–77]—includ-
ing prevalent male chorusing [78]—as well as its powerful
modulatory effects on social behaviour [79–81], make it
especially apt for studying communicative flexibility. Singers
tailor their vocal qualities to their expressive intentions [40],
and present results show that they can do so in a manner
that facilitates parallel acoustic channels of social communi-
cation. Human chorusing thus simultaneously permits
competitive and cooperative goals at individual and group
levels, thereby providing a platform that supports complex
social interaction through music.
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