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finding sheds light on the phylogeny of
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SUMMARY
The appreciation of music is a universal trait of humankind.1–3 Evidence supporting this notion includes the
ubiquity of music across cultures4–7 and the natural predisposition towardmusic that humans display early in
development.8–10 Arewemusical animals because of species-specific predispositions? This question cannot
be answered by relying on cross-cultural or developmental studies alone, as these cannot rule out encultur-
ation.11 Instead, it calls for cross-species experiments testing whether homologous neural mechanisms un-
derlying music perception are present in non-human primates. We present music to two rhesus monkeys,
reared without musical exposure, while recording electroencephalography (EEG) and pupillometry. Monkeys
exhibit higher engagement and neural encoding of expectations based on the previously seeded musical
context when passively listening to real music as opposed to shuffled controls. We then compare human
and monkey neural responses to the same stimuli and find a species-dependent contribution of two funda-
mental musical features—pitch and timing12—in generating expectations: while timing- and pitch-based ex-
pectations13 are similarly weighted in humans, monkeys rely on timing rather than pitch. Together, these re-
sults shed light on the phylogeny of music perception. They highlight monkeys’ capacity for processing
temporal structures beyond plain acoustic processing, and they identify a species-dependent contribution
of time- and pitch-related features to the neural encoding of musical expectations.
RESULTS

Music is not just any soundwave. It encompasses sequential de-

pendencies between tones and durations that determine the

probability of each sound as a function of past auditory

context.13–15 By tracing these intricate patterns, human listeners

recognize melodies, synchronize with rhythms, and generalize

prior experience to novel stimuli. Is the ability to track melodic

and rhythmic progressions phylogenetically conserved? With

few exceptions, research on non-human primates has either

focused on isolated rather than holistic music features or on

naturalistic music stimuli that are difficult to control experimen-

tally.16–25 Here, we bridged this gap by adopting the best of

both approaches: we used a method that combines naturalistic

musicwithmulti-feature stimulus and neural signal modeling.We

tested whether, similarly to humans,26,27 monkeys encode the

regular relationships between musical notes to predict when

the next event is likely to occur and what it will be.14 Although
Current Biology 34, 1–7,
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monkeys can extract probabilistic spectral-relations within a

small set of events,28 this ability remains unexplored in the richer

context of naturalistic music.

Prediction-related neural signals have been widely measured

in humans using non-invasive electroencephalography (EEG).

Traditional methods selectively focus on EEG activity evoked

by musically unexpected events that violate the rhythmic or

melodic patterns of the preceding context, in particular event-

related potentials (ERPs).29–31 Here, we combined this traditional

approach with a more recent analytical method32,33 that no

longer examines single events but rather models the continuous

EEG response to music by predicting neural activity from both

acoustic features34 and probabilistic rhythmic-melodic descrip-

tors of music.26,27 We examined the neural data of two monkeys

(Macaca mulatta) passively listening to real melodies composed

by J.S. Bach. In control conditions, monkeys listened to shuffled

melodies matched in pitch content and average note timing but

disrupted in terms of musical structure (STAR Methods).
January 22, 2024 ª 2023 The Authors. Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://twitter.com/RobertaBianco0
https://twitter.com/NovembreGiacomo
mailto:roberta.bianco@iit.it
mailto:giacomo.novembre@iit.it
https://doi.org/10.1016/j.cub.2023.12.019
http://creativecommons.org/licenses/by/4.0/


Figure 1. Assessing whether musically naive monkeys generate musical expectations with pupillometry and EEG

(A) EEG and pupillometry were recorded from two rhesus monkeys passively listening to real or shuffled music. We used an unsupervised statistical learning

model to calculate values of surprise (S) and entropy (E, not illustrated in the figure) associated with pitch and timing-onset of each note (Sp, St, Ep, and Et). The bar

plot shows the mean overall surprise (Sp + St) associated with real and shuffled music. Error bars represent 1 SEM.

(B) Sustained pupil dilation during exposure to real and shuffled melodies over 2 min (duration of the shortest melody; shadowed areas represent 95% CI).

(C) ERPs evoked by high versus low S notes for real and shuffled music (electrode FCz), aligned to note onset (0 ms). Cluster-based permutation test yielded a

significant cluster capturing higher EEG amplitude in response to unexpected notes, specifically associated with real music (cluster spanning from +30 to +90ms

in monkey 1 and from +30 to +60 ms in monkey 2). Cluster topographies showing the difference in amplitude between the two conditions are pointed out by the

arrows, and time windows are shaded in gray.

See also Figure S1 and Table S1.
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Monkeys had been reared without musical exposure. We simu-

lated the expectations of these ‘‘naive listeners’’ using a vari-

able-order Markov model (information dynamic of music

[IDyOM])13 that can successfully predict the neural encoding of

musical expectations in humans.26,35–37 This model leverages

past (long- and short-term) music exposure to compute the

Shannon’s surprise (S) and entropy (E) of each note, specifically

with respect to pitch and onset timing (Sp, St, Ep, Et) (Figure 1A;

STAR Methods). Confirming that our control condition reduced

the predictability of the original stimuli, the model indicated

that shuffled music had a higher overall surprise (Sp + St) than

real music (W = 40, p = 0.005, confidence interval [CI] [1.92,

5.21], median shuffled = 7.53 ± 1.46, real = 3.67 ± 0.77)

(Figures 1A and S1A).

We also recorded pupil dilation as a covert indicator of the

monkeys’ internal state and engagement.38,39 The pupil diam-

eter decreased throughout listening, less so in response to real

than to shuffled music (Figure 1B) (music type, c2 (1) = 1.78,

p = 0.181; time bins, c2 (1) = 159.90, p < 0.001; music type 3

time bins, c2 (1) = 12.64, p < 0.001; the latter interaction was

also observed in a control analysis including gaze as a covariate:

music type3 time bins, c2 (1) = 24.77, p < 0.001). This indicates

that the monkeys’ internal state38 changed across real and shuf-

fled music and suggests that their nervous system was relatively

more engaged by the real music. This interpretation is supported

by evidence showing that sustained pupil dilation is induced by

regular auditory patterns in monkeys39 and by attended,40

familiar,41 or pleasant42,43 musical stimuli in humans.

Did real and shuffled music also lead to distinguishable neural

activities? We examined ERP modulations in response to a sub-

section of events (i.e., musical notes) associated with the highest

and lowest 20%quantiles of surprise values (high S versus lowS;

Figure S1B). ERP amplitude was enhanced in response to unex-

pected (high S) compared with expected (low S) notes when

monkeyswere listening to real but not shuffledmusic (Figure 1C),
2 Current Biology 34, 1–7, January 22, 2024
suggesting a sensitivity to the regularities present in the real mu-

sic. Specifically, we observed a significant cluster capturing

higher EEG amplitude in response to unexpected notes (monkey

1: p < 0.001, electrodes: AF3-4, F1-z-2, FC5-3-1-z-2-4, Cz; mon-

key 2: p < 0.001, electrodes: F1-z-2, FC3-1-z-2, Cz). The time

window of this modulation is reminiscent of ERP components

associated with prediction error, previously characterized in

monkeys44 and humans.45 This effect of surprise observed while

listening to real music indicates optimized detection of unex-

pected events within structured contexts, in line with human46,47

and rodent studies.48 Conversely, surprise was not tracked while

listening to shuffled music, possibly because these stimuli were

characterized by higher entropy that might have flattened the ef-

fect of surprise (Figure S1C). Our finding highlights that the struc-

ture of musical stimuli allowed the monkeys to generate

expectations.

To distinguish EEG modulations driven by musical expecta-

tions from those driven by processing acoustic features, we

used the multivariate temporal response function (mTRF)

approach (Figure 2A). Compared with traditional ERP analysis,

mTRF allows us to model how multiple features of a continuous

stimulus predict the EEG signal26,27,33 (Figure 2A; STAR

Methods). We first quantified prediction accuracy of a baseline

acoustic model (A model) comprising only low-level acoustic

features (i.e., note onsets, spectral flux27,34). We then tested

whether better prediction accuracy could be achieved using a

musicmodel (AMmodel) comprising both low-level acoustic fea-

tures (Amodel) as well as four musical features quantifying pitch-

and timing-based expectations (Sp, St, Ep, Et,
26 or only Sp, St;

Figures 2 and S2). A control model (AMc) included the same fea-

tures of AM but shuffled musical features (S, E). We observed a

gain in AM relative to A, and selectively during real as opposed to

shuffled music (Figure 2B). Despite having the same dimension-

ality as AM, no gain was found in AMc. This was confirmed by a

linear mixed model yielding main effects of model (AM versus



Figure 2. Neural encoding of expectations depends on musical structure beyond acoustics

(A) Schematic of mTRF models regressing different representations of the continuous stimulus on the EEG data: the acoustic model (A, binary note onset and

spectral flux as predictors); the music model (AM, A plus music predictors Sp, St, Ep, Et of each note; E vectors are not illustrated in the figure); and the control

model (AMc, A plus randomized music predictors with preserved note onset times).

(B) Delta values representing the gain in EEG prediction accuracy (and associated topographies) obtained by subtracting the baseline A model from the AM and

AMc models for real and shuffled music, respectively. Error bars represent 1 SEM.

(C) Monkey- and melody-specific EEG prediction accuracy (ranked according to mean surprise; red, real melodies; gray, shuffled melodies). The upper panel

shows the prediction accuracy scores yielded by the A model. The middle and bottom panels show the prediction accuracy gain of the AM and AMc models

relative to the A model, respectively.

See also Figure S2.
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AMc:c2(1) = 39.78, p < 0.001) and condition (real versus shuffled:

c2(1) = 14.127, p < 0.001), as well as a significant interaction be-

tweenmodel and condition (c2(1) = 14.192, p < 0.001). Follow-up

contrasts indicated that the prediction accuracy gain of AM (rela-

tive to A) in real music was greater than in shuffled music

(b = 0.008, SE = 0.002, p = 0.005). It was also greater than the

control AMc (AM versus AMc in real music, b = 0.008,

SE = 0.001, p < 0.001; AM versus AMc in shuffled music,

b = 0.007, SE = 0.002, p = 0.014). There were no other significant

contrasts (all p > 0.96). Melodies varied in their mean predictabil-

ity (Figure S1A), yet these effects were not driven by any specific

melody (Figure 2C). This analysis demonstrates neural encoding

of subtle variations of surprise while listening to real but not shuf-

fled melodies. Thus, the structure of the musical sequences

played a role in the formation of expectations in monkeys over

and above mere acoustic tracking.

Both pitch- and timing-related features drive musical expecta-

tions in humans.12,13,26Which of these features drivesmusical ex-

pectations in monkeys? We recomputed EEG prediction accu-

racy estimating the selective contribution of pitch and timing.

We then related monkeys’ neural data (real music only) to that

of humans exposed to the same music (data from Di Liberto

et al.26) and found a species-dependent contribution of pitch

and timing to the formation of musical expectations (Figure 3A).

For each species, we tested the gain in prediction accuracy (rela-

tive to the baseline Amodel) of reduced versions of AM, including

either only pitch- (AMp) or timing-related (AMt) features. In mon-

keys, the model including only timing (AMt) outperformed the

baseline A model (V = 52, p = 0.005). In contrast, the model

including only pitch (AMp) did not yield a significant gain

(V = 38, p = 0.161). A main effect of the model yielded by a linear

mixedmodel (AM versusAMp versusAMt: c2(2) = 30.8, p < 0.001)
indicated that AMt performed similarly to the full AM model (AM

versus AMt: b = 5.73e�5, SE = 0.001, p = 0.99), while AMp pre-

diction accuracy gain dropped compared both to AM (AM versus

AMp: b = 6.47e�3, SE = 0.001, p < 0.001) and AMt (AMt versus

AMp: b = 6.41e�3, SE = 0.001, p < 0.001). Instead, in humans,

both AMt and AMp models outperformed the baseline A model

(AMp, V = 181, p = 0.001; AMt, V = 169, p = 0.007). A main effect

of the model (AM versus AMp versus AMt: c2(2) = 16.88,

p < 0.001) indicated a drop in prediction accuracy gain for both

reduced models (AM versus AMp, b = 1.77e�3, SE = 0.5e�3,

p = 0.002; AM versus AMt, b = 1.90e�3, SE = 0.5e�3,

p < 0.001), which performed similarly to one another (AMt versus

AMp: b = 0.13e�3, SE = 0.5e�3, p = 0.96). This analysis demon-

strates that, while pitch-related features seem not to be relevant

for generating monkeys’ expectations, timing-based expecta-

tions, exhibited by both humans and monkeys, are phylogeneti-

cally conserved (see also supporting ERP evidence; Figure S3A).

Species-specific mnemonic constraints might be captured by

the length of the musical context used to optimally predict up-

coming events. Given that both species exhibited timing-based

expectations, we tested how such expectations change with

progressively smaller short-term memory. We achieved this by

progressively shortening the length of the Markov chains (i.e.,

the number of preceding notes or n-gram) used to simulate

timing-based expectations in both species. The optimal EEG

prediction (the maximum AMt gain among models relying on

contexts of different lengths) was associated with an n-gram of

4 in monkeys and of 16 in humans (Figure 3B). This suggests

that monkeys might have relied on a shorter musical context

compared with humans, presumably due to short-term memory

limitations.49,50 However, with such a small number of data

points, the reliability of this effect cannot be confirmed.
Current Biology 34, 1–7, January 22, 2024 3



Figure 3. Contribution of pitch, timing, andmnemonic constraints to

the generation of musical expectations (monkeys and humans)

(A) Gain in EEG prediction accuracy obtained by computing the delta between

the baseline A model and reduced versions of AM, including either only pitch-

(AMp) or only timing-related (AMt) features. Dots represent mean gain across

melodies (real music only) and subjects. Cross-species differences in the

absolute size of gain might be attributed to differences in EEG signal-to-noise

ratio (note that monkeys listened to the melodies across more repetitions

[n = 22] compared with humans [n = 3] to compensate for the different group

numerosity [monkeys = 2, humans = 20]). Error bars represent 1 SEM.

(B) Mean gain as a function of the number of preceding consecutive notes (n-

gram) used to estimate note surprise (for each n-gram, surprise is estimated by

combining its sub n-grams up to the given length). Qualitatively, the largest

gain in EEG prediction accuracy (AMt versus A) was associated with n-gram =

4 in monkeys and n-gram = 16 in humans (the average inter-inset interval

across melodies was 0.315 s, hence we estimate that n-grams equal to 4 and

16 correspond approximately to a temporal interval of �0.9 and �4.7 s,

respectively).

See also Figure S3.
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DISCUSSION

This study tested whether non-human primates generate audi-

tory expectations while listening to music. Monkeys were pas-

sive listeners and were reared without musical exposure.

Despite this, monkeys exhibited larger pupil dilation, as well as

neural encoding of musical expectations beyond mere acoustic

tracking, when listening to real as opposed to shuffled music.

Thus, a species that diverged from our ancestors 20–30 mya

shows evidence for a conserved auditory mechanism underlying

music perception, i.e., a primordial sensitivity to temporal
4 Current Biology 34, 1–7, January 22, 2024
regularities that may have served as an intermediate step toward

the evolution of human musicality. This work further sets the

stage for future cross-species and developmental comparative

studies to non-invasively track neural encoding of naturalistic

musical stimuli.

Arewemusical animals because of species-specific predispo-

sitions?51,52 Our results show that musically naive monkeys

strongly rely on timing- rather than pitch-based expectations;

this speaks for an evolutionarily conserved sensitivity to timing

structure (presumably the relationship between successive in-

tervals; STAR Methods), probably evolved for general-purpose

auditory scene analysis.53,54 Such sensitivity is built upon the ca-

pacity to compare the duration of successive intervals, enabling

an animal to recognize a rhythmic pattern among others and

across different temporal scales. This capacity has been

observed in other mammals, such as rodents,55 and could

even support communicative behavior in some species (i.e.,

sperm whales and lemurs56,57). As such, it should not be consid-

ered exclusive to music; it likely extends to various temporal

structures within the auditory environment.58,59 Phylogenetically

conserved timing-based expectations might explain why the ca-

pacity to process temporal—and notably musical—structures is

observed early during human ontogeny and universally across

cultures.2,3

The neural responses observed here suggest that monkeys

generated timing-based expectations while listening to real mu-

sic that contained a variety of temporal intervals. This highlights

temporal structure processing capacities that go beyond mere

acoustic processing or detection of isochronous rhythms.18,19,60

Despite inevitable species-specific differences in stimulus rele-

vance, both species showed integration of past temporal inter-

vals to generate temporal expectations, showing that in the pres-

ence of regularities, the past can help to predict the future.61

Future studies should test whether, compared with humans,

monkeys rely on a lower number of past adjacent intervals.

This hypothesis stems from evidence indicating reduced short-

term auditory memory in monkeys49,50 and weaker connections

between auditory andmotor cortico-thalamic circuits linked with

temporal and sequential processing.53,62

Unlike their sensitivity to timing, monkeys’ sensitivity to pitch

regularities seems limited. Although monkeys can learn simple

statistical relationships in the spectral domain (i.e., transition

probabilities within a small set of events),28 this capacity might

not extend to larger arrays of events such asmusical sequences.

Monkeys’ limited sensitivity to pitch regularities might be linked

to an attentional bias favoring timing over pitch, an underrepre-

sentation of complex harmonic pitches in the auditory cortex,20

or an underdeveloped fronto-temporal dorsal pathway for

sequential binding.62–65 Are pitch-based probabilistic expecta-

tions a human innovation within the primate lineage? To address

this question, future studies should measure experience-depen-

dent effects66 after extended music exposure and extend our

approach to other non-human primates or human newborns.

Negative evidence from enculturated non-human primates or

positive evidence from human newborns would strongly argue

that pitch-based expectations are uniquely predisposed in hu-

mans among primates. Outcomes in this direction will dovetail

with the hypothesis that pitch processing convergently evolved

in response to similar demands in vocal learning species,
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regardless of their evolutionary lineages.67–69 This would explain

the scarce use of pitch cues in poor vocal learning species, such

as rhesus monkeys.

Our work paves the way to integrated experiment-modeling

and non-invasive pipelines, which can facilitate future cross-

species and ontogenetic studies. This will help in mapping the

biological building blocks of human musicality, its evolution,

and its spread across species.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Monkey data Dataverse https://doi.org/10.48557/U5SHX6

Human EEG data Di Liberto et al.26 https://doi.org/10.5061/dryad.g1jwstqmh

Melodies N/A http://www.jsbach.net

Software and algorithms

Analysis code Github https://github.com/robilobi/monkey_eeg_music

Information Dynamics Of Music (IDyOM) model Github https://github.com/mtpearce/idyom/wiki

Multivariate Temporal response function (mTRF) Crosse et al.33 https://sourceforge.net/projects/aespa/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Roberta Bianco (roberta.

bianco@iit.it).

Materials availability
All melodic sequences and metadata are publicly available at https://doi.org/10.48557/U5SHX6.

Data and code availability

d Neurophysiological data collected from monkeys have been deposited to IIT Dataverse. The accession numbers are listed in

the key resources table.

d This paper analyzes existing, publicly available human EEG data. The accession numbers are listed in the key resources table.

d All original code has been deposited to Github and is publicly available. The link is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
Two male rhesus monkeys (Macaca mulatta) reared without music exposure were tested: Monkey M (11 years old, 10 Kg) and Mon-

key T (11 years old, 9.8 Kg). The animals were previously involved in other studies44 and trained to sit on a primate chair, with their

head fixed, wearing an ad hoc tailored EEG cap (http://www.easycap.de). The animals had no restrictions on food and water, both

before and after the experimental sessions. Animal care and housing, and experimental procedures complied with European (EU

Directive 63-2010) and Italian (DL. 26/2014) laws on the use of non-human primates in scientific research.

METHOD DETAILS

Stimuli
Stimuli consisted of 14 monophonic piano melodies: 10 melodies (Real music) written by Johann Sebastian Bach (previously used in

Di Liberto et al.,26 see Table S1 for details), and 4 control melodies (Shuffled music) that entailed disruption of pitch order and timing

regularities from four of the original musical melodies. The length of the melodies was variable (average duration = 158.07 s ± 24.06)

and the tempo ranged between 47 and 140 bpm (average tempo = 106.5 bpm ± 34.7). The original melodies (Real music) can be

found at http://www.jsbach.net/ (see other details in Table S1). The four shuffled melodies were built from four of the real melodies.

We generated only 4 shuffled melodies to constrain the experiment within a reasonable duration. These shuffled melodies were spe-

cifically built from a selection of original melodies, i.e. those associated with the relatively highest (melodies 05 and 08) and lowest

(melodies 01 and 10) temporal-onset mean surprise (see Figure S1 and below for a definition of ‘‘surprise’’). This decision was driven

by evidence showing that music carrying relatively higher timing surprise evokes stronger brain responses in humans,26 so our se-

lection aimed at balancing these effects across real and shuffled music. Shuffled melodies were matched with the real ones in pitch

content, average note duration and inter-onset intervals (IOIs), but their predictable structure was disrupted along two musical
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features. Pitch regularities were disrupted by shuffling the temporal order of the original notes. Rhythmic regularities were disrupted

by generating a new pool of IOIs Gaussian-distributed around the original mean IOI ± the distance between the mean and the min-

imum original IOI. The random IOIs were then quantized in MuseScore software (https://musescore.org, version 3.3.4.24412) to the

16th note to remain organized in integer ratios. In MuseScore, the MIDI velocity of all notes (which roughly corresponds to the note’s

loudness in MIDI notation) was set constant (value = 100), and piano sound wav files were synthesized at a sampling rate of

44,100 Hz. All melodies were flanked with a beep (800 Hz pure tone, linearly ramped with 5 ms fade-in and fade-out) and 5 s silence

according to the following structure: beep-silence-music-silence-beep. Finally, the.wav files were converted to mono, and ampli-

tude-normalized by dividing by the standard deviation using Matlab (R2019, The MathWorks, Natick, MA, USA).

Information Dynamics of Music model
Stimuli were modelled in terms of note-by-note unexpectedness (as represented by surprise) and uncertainty (as represented by en-

tropy) using the Information Dynamics of Music model (IDyOM, https://www.marcus-pearce.com/idyom/).13 IDyOM is an unsuper-

vised variable-order Markov model of statistical learning and probabilistic predictions that learns the stimulus statistics by storing

previous events and sub-sequences of events (n-grams) from given input sequences. The algorithm reads a musical sequence

(one event, or note, at a time) and it generates a probability distribution for each new event by combining predictions from

n-grammodels of different orders. For example, a Markov model of order n–1, known as an n-grammodel, calculates the probability

of a note based on the context of the previous n–1 notes. Thus, the probability distribution over every possible note continuation is

estimated for every n-gram context up to a given length (model order-bound). Themodel outputs Surprise (S, or Information Content)

and Entropy (E) as a function of time. Entropy at time ‘t’ is based on the probability distribution of potential notes considering obser-

vations before the event at ‘t’ is observed. It is computed as the sum of all (negative) log-probabilities across all possible notes pre-

viously experienced by themodel before time ‘t’. Surprise at ‘t’ is the specific negative log-probability of the note actually observed at

time ‘t’ in continuation of the previous sequence. It uses the same probability distribution but incorporates the event at ‘t’. Note that

the term ‘surprise’, used here as in previous work relying on IDyOM,26,43,70–72 simply refers to the negative log probability of the

event73 and should be distinguished from ‘Bayesian surprise74’. In sum, E is often used to reflect the ‘‘uncertainty’’ about the event

at ’t’ before it occurs, whilst S reflects its unexpectedness once the event has occurred. IDyOM can incorporate both a short-term

model and a long-termmodel using a geometric weighted mean.75 The short-termmodel is trained on the current sequence to simu-

late the statistics learned from the specific stimulus at hand. The long-term model is incrementally trained on stimulus material seen

by the model before submitting a specific sequence to simulate the listener’s prior musical exposure. In this way, IDyOM can

generate both schematic and dynamic predictions14 based on both global regularities (from the training material) and local regular-

ities (from the portion of the sequence heard up to that point). In line with previous literature,26,43,72 we used an unbounded n-gram

configuration that uses contexts up to the size of each musical piece. We also run additional analyses using IDyOM configurations

with reduced model order-bound (1 to 4, 8, 12, 16, 20, 24) to reproduce differences in short-term memory. To simulate the statistical

knowledge that the (naı̈ve) monkeys would acquire through mere exposure to the stimuli, predictions were derived from a combina-

tion of short and long-term models, with the latter being trained only on the stimuli used in the experiment i.e. via resampling (10-fold

cross-validation) (in IDyOM terminology: no pretraining, ‘‘both+’’ model configuration). To simulate the long-term statistical knowl-

edge of human subjects, which instead is acquired through lifetime exposure to Western tonal music, predictions were derived

from a combination of short- and long-termmodels, with the latter being additionally trained on a large corpus ofWestern tonal music

(comprising 152Canadian folk songs, 566German folk songs from the Essen folk song collection, and 185 choralemelodies harmon-

ised by Bach; as in previous applications of IDyOM).26,72,76 Control analyses using the same IDyOMmodel for both species lead to a

similar pattern of results (Figure S3B). Amongst the several facets of music that IDyOM can account for, here, we focused on two

fundamental dimensions of music that best describe piano monophonic melodies: the pitch and timing of each note. Accordingly,

time series representing pitch and inter-onset interval ratios (unlinked ‘cpitch and ioi-ratio’ IDyOM viewpoints) were independently

used by IDyOM to estimate note-by-note surprise (S) and entropy (E) for pitch and timing onset (Sp, Ep, and St, Et, respectively),

before combining these as the joint (sum) probability of the note (S, E).

Experimental procedures
The experimental procedure was conducted within a darkened and acoustically insulated room. The twomonkeys were tested simul-

taneously whilst sitting in custom-made primate chairs (Crist Instrument, USA). The monkey’s head, which was restrained through a

head post, faced a screen (40-inch monitor, 100 Hz, 800-600 resolution, 32-bit color depth; monitor-eye distance: 140 cm). Monkey

M (M1) had the monitor slightly on its right side (approximately 30 degrees from the midline, i.e. at 1 o’clock) while Monkey T (M2)

slightly on its left side (i.e. at 11 o’clock). The stimuli were presented free field from two audio speakers (Creative Inspire T10) placed

on either side of the monitor and delivered at�75 dB SPL. The monkeys watched a silent movie consisting of a sequence of different

images (displaying natural and urban landscapes), slowly fading in and out (image duration 7 s, fade in / out 2 s), presented in random

order.

EEG was recorded using the 26-channel Biosemi Active-2 system and pupil diameter was recorded with an infrared eye-tracking

camera (Arrington Research, ViewPoint EyeTracker software). The procedure started with EEG preparation (taking approximately

30 min). This included securing the EEG cap on the monkeys’ (shaved) heads and placing all recording electrodes by keeping elec-

trode offset value < 20 (cf. Biosemi ActiveView software). This was followed by calibration of the eye tracker, which took approxi-

mately 10 min, and then by 45-min of EEG recording, hereafter referred to as ‘‘Session’’. During each Session, the animals passively
Current Biology 34, 1–7.e1–e5, January 22, 2024 e2
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listened to the 14 stimuli, each presented once and in random order (inter-stimulus interval jittered between 500 and 2000ms), whilst

watching the silent movies. Monkeys underwent 26 sessions.

The stimulus presentation and the synchronization with EEG and eye-tracker acquisition devices were controlled by Presentation

software (Version 23.0, Neuro- behavioural System, Berkeley, CA).

Pupil recording

We recorded pupil dilation as a covert indicator of the monkeys’ attentional state and engagement.39 The infrared eye-tracking cam-

era, positioned just below the monitor, continuously tracked gaze position and estimated pupil diameter at a sampling rate of

225.79 Hz. The camera focused monocularly on each animal and recorded M1’s right eye and M2’s left eye. A nine-point calibration

procedure was conducted before the recording started following the 9-points built-in procedure of the ViewPoint EyeTracker soft-

ware. Estimated gaze points were obtained by presenting monkeys with sudden visual stimuli on a black background, leveraging

their natural behavior of saccading and fixating on such stimuli. The calibration was considered successful when the following con-

ditions were met: (1) a relatively rectilinear and well-separated configuration of the geometry grid of the estimated points, which had

to display the same aspect ratios as those presented on the screen, and (2) an overlap between the estimated and the actual gaze

points when the stimuli were presented again.

EEG recording

We recorded neural activity with electroencephalography (EEG) at a 1024-Hz sampling rate. The electrodes were mounted on two

custom-made caps (http://www.easycap.de), tailored to fit each animal’s head. The BioSemi system replaces the ground and refer-

ence electrodes with two electrodes named CMS (CommonMode Sense, active electrode) and DRL (Driven Right Leg, passive elec-

trode). According to the system’s guidelines, CMS should (ideally) be placed in the center of the measuring electrodes, while DRL

should be placed relatively away from them.While placing CMS, we also had to consider the position of the headpost (approximately

over Cz inM1, andCPz inM2). Therefore, CMSwas placed onCPz (inmonkeyM1) andCz (inmonkeyM2). DRLwas always placed on

the frontal-left side of the animal’s head. Two other electrodes (’Fz’, ’FCz’ in M1; ’Fz’, ’F2’ in M2) were not recorded due to the pres-

ence of the recording chamber (not used for the current study) positioned over the right frontal hemisphere in both animals.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were pre-processed and analyzed in Matlab R2019. Statistical analyses were run in R (version 4.1.3, 2022-03-10) and included

non-parametric tests or linear mixed-effects models (lme4 package77). All models comprised Random Effects being Monkey (M1,

M2) andMelody IDs (1-14). The Fixed effects were specific to eachmodel (see below). Statistical significance was evaluated by likeli-

hood-ratio tests conducted using the ‘anova’ function in the stats package. Follow-up contrasts were conducted using the ‘em-

means’ package and the Tukey method to account for the increased risk of type I error resulting from multiple comparisons.78

The adjusted p-values were calculated to determine significant differences between conditions. A significance level of a = 0.05

was used.

Pupil analysis
Time series representing pupil width were segmented into 120 s long epochs (corresponding to the duration of the shortest melody),

each locked to stimulus onset. Pupil width was analyzed throughout each epoch to evaluate the overall sustained response to each

melody. Compromised data points during which the eye was either fully or partially closed were set to NaN. Although the monkeys’

head was fixed to minimize gaze dispersion, they were not trained to fixate on any specific point on the screen. Therefore, to reduce

noise due to large eye movements,42,79 we computed the median gaze point, presumably reflecting the center of the screen, and set

to NaN the samples with x-y coordinates located outside a circular region (diameter 0.5 a.u., which corresponds to 353 20 degrees

of visual angle) centered on the median gaze. Gaps of missing data points shorter than 1 s, due to blinks or averted gaze, were esti-

mated using shape-preserving piecewise cubic interpolation80 (in a control analysis, we confirmed that interpolation is not necessary

to replicate the presented results). The resulting mean percentage of interpolated data was 9.36% ± 5.20 for M1; 22.46% ± 8.19 for

M2. Time courses were binned by calculating themedian every 500ms time bins (a bin was set to NaN if it contained less than 50%of

data). Finally, if NaN intervals constituted 25 s or more out of the 120 s epoch duration, then this epoch was rejected entirely.

Following these procedures, 20% of M1’s epochs were excluded, while all M2’s epochs were retained. Next, the data were z-scored

(within each animal and session), and time series (one permelody) representative of pupil widthwere entered into a linearmixed effect

model with Fixed Effects (and their interaction) being Music (Real, Shuffled) and Time-bins (1-240), with covariate being Session

(1-26), and Random Effects being Monkey (1, 2) and Melody IDs (1-14). For control purposes, we run another model controlling

for gaze at each data point. This model additionally included gaze y and gaze x (median per Time-bin) as covariates.

Monkey EEG pre-processing
Electrophysiological signals such as EEG are notoriously noisy when recorded from an awake animal. This is mostly because, unlike

humans, monkeys do not comply with task instructions, and may generate spontaneous movements that leak artefacts in the EEG

recordings. For this reason, we used a combination of open-access denoising algorithms and developed a fully data-driven pipeline

for the pre-processing of monkey EEG data. EEG data from 4 out of 26 sessions were corrupted. Thus, the EEG time series asso-

ciated with 22 sessions were analyzed by applying the same pipeline to the two monkeys’ datasets separately. The analysis was

conducted primarily using Fieldtrip81 combined with EEGLAB toolboxes (http://sccn.ucsd.edu/). The continuous EEG data were
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bandpass filtered between 1 and 30 Hz (Butterworth filter, zero-phase, order 3), down sampled to 100 Hz, and segmented into

epochs starting with the first onset and ending with the last offset of the musical piece. Before re-referencing the data using common

average reference (CAR), we provisionally discarded faulty or noisy electrodes in order not to leak noise to all electrodes through

CAR. Specifically, mean, STD and peak-to-peak were calculated over time within a trial for each electrode; if any of these variables

for one electrode was 2.75 STD away from the mean of the other electrodes, that electrode was flagged noisy or faulty. This process

was iterated without the outlier electrode(s) until a distribution without outliers was found. AF3 and AF4 were not excluded because

they were necessary for the automatic detection of eye-related artefacts (see below). The data were further de-noised in EEGLAB

using a validated algorithm for automatic artefact-correction: Artefact Subspace Reconstruction (ASR, threshold value 5),82 previ-

ously applied to human and monkey EEG data.44,83 Eye-movement artefacts were corrected using another automatic artefact-

correction algorithm implemented in EEGLAB: ICLabel.84 For this, following independent component analysis (ICA, using EEGlab’s

‘‘runica’’ function), independent components that ICLabel categorised as related to eye movements (with > 90% likelihood) were re-

jected. At this stage, the electrodes initially excluded from the analysis (being either faulty or noisy) as well as those corresponding to

the scalp position where the headpost and the recording chamber were placed (’Cz’, ’CPz’, ’Fz’, ’FCz’ for M1 or ’Cz’, ’CPz’, ’Fz’, ’F2’

for M2) were interpolated by replacing their voltage with the average voltage of the neighboring electrodes (25 mm distance). If,

following the above pre-processing, noisy electrodes were still automatically identified, the interpolation stepwas repeated (the num-

ber of such iterations varied between 1 and 2 across sessions).

ERP analysis
Event-related potential (ERP) analyses were conducted by segmenting the EEG data into 200 ms epochs, starting 50 ms before the

onset of each note, and ending 150 ms following the onset. This time window was chosen based on the observation that monkeys’

ERPs (namely the P30, the N70 and the P130) exhibit earlier latencies than their human homologous (P50, N100 and P200) possibly

due to anatomical differences in the length of the recruited fiber tracts.44,85 To quantify the ERPmodulation as a function of note sur-

prise, we selected the notes associated with the highest and lowest 20% S values for each melody. For each session, the epochs of

interest were then averaged acrossmelodies and baseline corrected using the -50 to 0ms pre-stimulus interval. The effect of surprise

was tested separately for Real and Shuffledmusic. Statistics were corrected for multi-comparisons using cluster-based permutation

tests (as implemented in Fieldtrip; 1000 permutations86). A cluster had to be composed of at least two consecutive time points with a

p-value <.05 on at least 3 neighboring EEG electrodes.

TRF analysis
We used Temporal Response Functions (TRF) to model the EEG responses to the continuous acoustic and musical features of the

presented stimuli (see below for details). This analysis was carried out using the mTRF Matlab toolbox.33 Each stimulus feature was

normalized across time for each melody such that the root mean square of each feature was equal to 1. The EEG data time series

corresponding to the same melody were averaged across sessions to increase the signal-to-noise ratio. We ran a forward model

that predicts the ongoing EEG response from stimulus features with a time lag window of -50 and +150ms to capture the fluctuations

in the EEG evoked by changes in the stimulus feature. In practice, themodel weights capture ERP-like responses,32,33 so the specific

time window was chosen to equal the relevant time window based on the ERP analysis. We used ridge regression to avoid overfitting

(range of lambda values: 10-4 - 108). The TRFwas fit using leave-one-melody-out cross-validation across all melodies (using the func-

tion ‘‘mTRFcrossval’’). The EEG time course of the left-out melody was predicted using the function ‘‘mTRFpredict’’. Next, the TRF

prediction accuracy was quantified by computing the Pearson correlation between the predicted and actual EEG data for each elec-

trode (r correlation values). To compare the prediction accuracies (associated with each melody) across different models represent-

ing the stimulus, we averaged the r values for the ten electrodes displaying the highest TRF correlations for the baseline acoustic

model A (see below). These electrodes also corresponded to a canonical auditory fronto-central topography (Figure 2B).

In line with the approach used in previous human work,26,27,34 we used the TRF procedure to test three different models (see Fig-

ure 2A): (i) a baseline Acoustic model accounting for the low-level acoustic features of themusic stimuli (model A; predictors: acoustic

onset, spectral flux); (ii) a Music model, that includes the features of the A model as well as features with impulses at the note onsets

but whose amplitudes are set to the pitch and time-onset surprise and entropy values from IDyOM (model AM; predictors: acoustic

onset and spectral flux, plus Surprise pitch, Surprise timing and Entropy pitch, Entropy timing – Sp, St and Ep, Et); and (iii) a Control

model, where the note onset times of the Surprise and Entropy features were maintained but the Surprise and Entropy values were

shuffled independently from one another (model AMc; predictors: acoustic onset, spectral flux, and shuffled Sp, St and Ep, Et). Whilst

we adhere to Di Liberto et al.26 for the Musical features (Sp, St, Ep, Et), we updated the acoustic model, originally including envelope

and its derivative, based on recent research.27,34 Specifically, a reanalysis of the data by Di Liberto et al.26 demonstrated that incor-

porating an acoustic onset vector alone explained a non-negligible amount of additional variance in the data (see also Kern et al.27).

Moreover, spectral flux has been demonstrated to outperform envelope and its derivative in neural music tracking.34 Upon inclusion

of the onset vector, we observed that adding spectral flux or adding envelope and its derivative produced comparable results.

For each melody, the prediction accuracy of model A was subtracted from the prediction accuracies of models AM and AMc to

quantify the unique contribution of the combined fourmusical features in the EEGprediction.We expectedmodel AM to have a higher

prediction accuracy than model A, suggesting that musical surprise and entropy account for dynamics of the EEG signal that are not

accounted for by the acoustic features. However, because simply adding features to amodel can generally improve performance, we

also compared the gain in prediction accuracy of model AM to that of AMc, which has the same dimensionality as AM but
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meaningless musical information. If surprise and entropy are encoded in the brain response, the gain of AM is expected to be higher

than AMc. We quantified this effect statistically by using a linear mixed effect model with two Fixed effects: Model ID (AM-A, AMc-A)

and Music (Real, Shuffled) and two Random effects: Monkeys (1, 2) and Melody IDs (1-14).

In addition, we quantified the separate contribution of pitch and timing features in the TRF model performance to assess how well

the individual features were tracked by the EEG.We created reducedmodels from the full AMmodel by selectively including the Sur-

prise and Entropy features representing either only pitch or only timing, hence yielding AMp (only Sp and Ep) and AMt (only St and Et)

models, respectively. The difference in prediction accuracies between the full and the reduced model provided an estimate of the

specific contribution of the included variable. Also, for comparability to our earlier analyses, the TRF prediction accuracies of model

A were subtracted from those of models AM, AMp and AMt (Figure 3A). The obtained delta values were entered into a linear mixed

effect model with two Fixed effects: Model ID (AM-A, AMp-A, AMt-A) andMusic (Real, Shuffled), and two random effects: Monkey (1,

2) and Melody IDs (1-14). In a control analysis, we repeated the above procedure while relying on a richer model A, including pre-

dictors simulating midbrain auditory responses.87 This control analysis corroborated the results reported in the main text (compare

Figure 3 with Figure S3C).

Finally, to assess the contribution of local context (or short-term memory) to the TRF analysis, we created AMp and AMt models

with surprise and entropy values derived using a progressively smaller n-gram context (model order k, see information dynamics of

musical model above). We thus assessed the prediction accuracy gain (relative to model A) obtained from AMp and AMt models

relying on IDyOM estimates based on 1, 2, 3, 4, 8, 12, 16, 20, and 24 model order.

Human EEG data pre-processing and analysis
We analyzed an open EEG dataset from a previously published study (to which the first author contributed26). This consisted of EEG

data recorded from 20 human participants listening to the same set of musical pieces used in the current study, except for the shuf-

fled melodies created for the current study. In the human study, each melody was presented three times in pseudo-randomized or-

der. EEGwas acquired using a 64-electrode BioSemi Active Two system (the same one used for recording themonkey EEGdata) and

digitized at a sampling rate of 512 Hz. For more details about the acquisition settings refer to the original paper.

The human EEG data were pre-processed and analyzed following the same pipeline applied to the monkey EEG data (see monkey

EEG pre-processing above). Before computing participant specific TRFs, the time series were averaged over the three repetitions of

themelodies. Next, we ran a forwardmodel for each subject using ridge regression (range of lambda values: 10-4 - 108), with 0-350ms

time lag, in line with the optimal time window found in Di Liberto et al.26 on the same dataset.
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